

Improving Kernel Security

Kernel Summit 2015, Seoul

Kees (“Case”) Cook
keescook@chromium.org

James Morris
james.l.morris@oracle.com

https://outflux.net/slides/2015/ks/security.pdf

mailto:keescook@chromium.org
mailto:james.l.morris@oracle.com
https://outflux.net/slides/2015/ks/security.pdf

What I mean by “Security”

● More than access control (SELinux)
● More than attack surface reduction (seccomp)
● More than bug fixing (CVEs)
● Must develop “Kernel Self-Protection”

Background: devices using Linux

● Servers, laptops, cars, phones ...
● >1,000,000,000 active Android devices in 2014
● Vast majority are running v3.4 (with v3.10 a

distant second)
● Bug lifetimes are even longer than upstream
● “Not our problem”? None of this matters: even if

we fix every bug we find, and they magically get
fixed downstream, bug lifetimes are still huge

Upstream Bug Lifetime

● In 2010 Jon Corbet showed average security bug
lifetime to be about 5 years from introduction to fix

● My analysis of Ubuntu CVE tracker covering 2011
through 2015:
– critical: 2 @ 3.3 years

– high: 31 @ 6.3 years

– medium: 297 @ 4.9 years

– low: 172 @ 5.1 years

● http://seclists.org/fulldisclosure/2010/Sep/268

http://seclists.org/fulldisclosure/2010/Sep/268

Fighting Bugs

● We're finding them
– static checkers: compilers, smatch, coccinelle, coverity

– dynamic checkers: kernel, trinity, KASan

● We're fixing them
– Ask Greg KH how many patches land in -stable

● They'll always be around
– We keep writing them

– They exist whether you're aware of them or not

– Whack-a-mole is not a solution

Analogy: 1960s Car Industry

● @mricon's presentation at the Linux Security
Summit

● Cars were designed to run, not to fail
● Linux now where the car industry was in 1960s
● We must handle failures safely

– Lives depend on Linux

Killing bugs is nice

● Some truth to security bugs being “just normals
bugs”

● Your security bug may not be my security bug
● We have little idea which bugs attackers use
● Bug might be in out-of-tree code

– un-upstreamed vendor drivers

– not an excuse for us to claim “not our problem”

Killing bug classes is better

● If we can stop an entire kind of bug from
happening, we absolute should do so!

● Those bugs never happen again
● Not even out-of-tree code can hit them
● But we'll never kill all bug classes

Killing exploitation is best

● We will always have bugs
● We must stop their exploitation
● Eliminate exploitation targets and methods
● Eliminate information leaks
● Eliminate anything that assists attackers
● Even if it makes development more difficult

Typical exploit chains

● Modern attacks tend to use more than one flaw
● Need to know where targets are
● Need to inject (or build) malicious code
● Need to locate malicious code
● Need to redirect to malicious code

What do we do?

● What follows is not an exhaustive list, but I don't
have much time...

Bug class: Stack overflow

● The traditional attack is saved return address
overwrite, but there are data-only attacks possible
too.

● exploit example:
– https://jon.oberheide.org/files/half-nelson.c

● Mitigations:
– stack canary (e.g. gcc's -fstack-protector(-strong))

– kernel stack location randomization

– shadow stacks

https://jon.oberheide.org/files/half-nelson.c
https://git.kernel.org/linus/8779657d29c0ebcc0c94ede4df2f497baf1b563f

Bug Class: Integer over/underflow

● exploit example:
– https://jon.oberheide.org/blog/2010/09/10/linux-kern

el-can-slub-overflow/
● Mitigations:

– instrument compiler to detect overflows at runtime

https://jon.oberheide.org/blog/2010/09/10/linux-kernel-can-slub-overflow/
https://jon.oberheide.org/blog/2010/09/10/linux-kernel-can-slub-overflow/

Bug class: Heap overflow

● exploit example:
– http://blog.includesecurity.com/2014/06/exploit-wal

kthrough-cve-2014-0196-pty-kernel-race-condition.ht
ml

– https://github.com/jonoberheide/kstructhunter

● Mitigations:
– runtime validation of variables sizes vs copy_*_user

– guard pages

– linked list validation

http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html
http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html
http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html
https://github.com/jonoberheide/kstructhunter

Bug class: format string injection

● exploit example:
– http://www.openwall.com/lists/oss-security/2013/06/

06/13
● Mitigations:

– drop %n entirely

● Still potentially an info leak

http://www.openwall.com/lists/oss-security/2013/06/06/13
http://www.openwall.com/lists/oss-security/2013/06/06/13
https://git.kernel.org/linus/708d96fd060bd1e729fc93048cea8901f8bacb7c

Bug class: kernel pointer leak

● exploit example:
– examples are legion

– http://vulnfactory.org/exploits/alpha-omega.c

– /proc entries, INET_DIAG, slabinfo

● Mitigations:
– kptr_restrict too weak

– detect seq_file + %p and block output

http://vulnfactory.org/exploits/alpha-omega.c
https://git.kernel.org/linus/455cd5ab305c90ffc422dd2e0fb634730942b257

Bug class: uninitialized variables

● This is not just an information leak!
● exploit example:

– https://outflux.net/slides/2011/defcon/kernel-exploita
tion.pdf

● Mitigations:
– clear kernel stack between system calls

https://outflux.net/slides/2011/defcon/kernel-exploitation.pdf
https://outflux.net/slides/2011/defcon/kernel-exploitation.pdf

Exploitation: finding the kernel

● exploit example:
– so many ways, see “kernel pointer leak” above

– /proc/kallsyms, /proc/modules

– https://github.com/jonoberheide/ksymhunter

● Mitigations:
– hide symbols and kernel pointers

– kernel ASLR

– runtime randomization of kernel functions

– X^R memory

– structure layout randomization

● Can this class of exploit ever be killed? Have to take it in pieces.

https://github.com/jonoberheide/ksymhunter
https://git.kernel.org/linus/8ab3820fd5b2896d66da7bb2a906bc382e63e7bc

Exploitation: Direct text overwrite

● I shouldn't even have to mention this!
● exploit example:

– patch setuid to always succeed

● Mitigations:
– W^X kernel page table permission

Exploitation: Function ptr overwrite

● This includes things like vector tables, descriptor
tables (which should also be hidden to avoid
information leaks)

● exploit example:
– https://outflux.net/blog/archives/2010/10/19/cve-2010-2963

-v4l-compat-exploit/
– https://blogs.oracle.com/ksplice/entry/anatomy_of_an_expl

oit_cve
● Mitigations:

– constify function pointer tables

– temporarily make targets writable

https://outflux.net/blog/archives/2010/10/19/cve-2010-2963-v4l-compat-exploit/
https://outflux.net/blog/archives/2010/10/19/cve-2010-2963-v4l-compat-exploit/
https://blogs.oracle.com/ksplice/entry/anatomy_of_an_exploit_cve
https://blogs.oracle.com/ksplice/entry/anatomy_of_an_exploit_cve

Exploitation: Userspace execution

● exploit example:
– see almost all previous examples

● Mitigations:
– hardware segmentation: SMEP, PXN

– instrument compiler to set high bit on function calls

– emulate memory segmentation via separate page
tables

Exploitation: Userspace data

● exploit example:
– https://github.com/geekben/towelroot/blob/master/to

welroot.c
– http://labs.bromium.com/2015/02/02/exploiting-badire

t-vulnerability-cve-2014-9322-linux-kernel-privilege
-escalation/

● Mitigations:
– hardware segmentation: SMAP, Domains

– emulate memory segmentation via separate page
tables

https://github.com/geekben/towelroot/blob/master/towelroot.c
https://github.com/geekben/towelroot/blob/master/towelroot.c
http://labs.bromium.com/2015/02/02/exploiting-badiret-vulnerability-cve-2014-9322-linux-kernel-privilege-escalation/
http://labs.bromium.com/2015/02/02/exploiting-badiret-vulnerability-cve-2014-9322-linux-kernel-privilege-escalation/
http://labs.bromium.com/2015/02/02/exploiting-badiret-vulnerability-cve-2014-9322-linux-kernel-privilege-escalation/

Exploitation: Reused code chunks

● Also known as Return Oriented Programming,
Jump Oriented Programming, etc

● exploit example:
– http://vulnfactory.org/research/h2hc-remote.pdf

● Mitigations:
– compiler instrumentation for Control Flow Integrity

– Return Address Protection, Indirect Control Transfer
Protection

http://vulnfactory.org/research/h2hc-remote.pdf

Challenge: Culture

● Conservatism
– 16 years to get symlink protections in, and that was

just a userspace defense

● Responsibility
– We must accept the need for these features

● Sacrifice
– We must accept the technical burden

Challenge: Technical

● Complexity
– Very few people are proficient at developing (much

less debugging) these features

● Innovation
– We must adapt the many existing solutions

– We can still innovate

Challenge: Resources

● People
– Dedicated developers

● People
– Dedicated testers

● People
– Dedicated backporters

Thoughts?

Kees (“Case”) Cook
keescook@chromium.org

James Morris
james.l.morris@oracle.com

https://outflux.net/slides/2015/ks/security.pdf

mailto:keescook@chromium.org
mailto:james.l.morris@oracle.com
https://outflux.net/slides/2015/ks/security.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

