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What I mean by “Security”

● More than access control (SELinux)
● More than attack surface reduction (seccomp)
● More than bug fixing (CVEs)
● Must develop “Kernel Self-Protection”



  

Background: devices using Linux

● Servers, laptops, cars, phones ...
● >1,000,000,000 active Android devices in 2014
● Vast majority are running v3.4 (with v3.10 a 

distant second)
● Bug lifetimes are even longer than upstream
● “Not our problem”? None of this matters: even if 

we fix every bug we find, and they magically get 
fixed downstream, bug lifetimes are still huge



  

Upstream Bug Lifetime

● In 2010 Jon Corbet showed average security bug 
lifetime to be about 5 years from introduction to fix

● My analysis of Ubuntu CVE tracker covering 2011 
through 2015:
– critical: 2 @ 3.3 years

– high: 31 @ 6.3 years

– medium: 297 @ 4.9 years

– low: 172 @ 5.1 years

● http://seclists.org/fulldisclosure/2010/Sep/268

http://seclists.org/fulldisclosure/2010/Sep/268


  

Fighting Bugs

● We're finding them
– static checkers: compilers, smatch, coccinelle, coverity

– dynamic checkers: kernel, trinity, KASan

● We're fixing them
– Ask Greg KH how many patches land in -stable

● They'll always be around
– We keep writing them

– They exist whether you're aware of them or not

– Whack-a-mole is not a solution



  

Analogy: 1960s Car Industry

● @mricon's presentation at the Linux Security 
Summit

● Cars were designed to run, not to fail
● Linux now where the car industry was in 1960s
● We must handle failures safely

– Lives depend on Linux



  

Killing bugs is nice

● Some truth to security bugs being “just normals 
bugs”

● Your security bug may not be my security bug
● We have little idea which bugs attackers use
● Bug might be in out-of-tree code

– un-upstreamed vendor drivers

– not an excuse for us to claim “not our problem”



  

Killing bug classes is better

● If we can stop an entire kind of bug from 
happening, we absolute should do so!

● Those bugs never happen again
● Not even out-of-tree code can hit them
● But we'll never kill all bug classes



  

Killing exploitation is best

● We will always have bugs
● We must stop their exploitation
● Eliminate exploitation targets and methods
● Eliminate information leaks
● Eliminate anything that assists attackers
● Even if it makes development more difficult



  

Typical exploit chains

● Modern attacks tend to use more than one flaw
● Need to know where targets are
● Need to inject (or build) malicious code
● Need to locate malicious code
● Need to redirect to malicious code



  

What do we do?

● What follows is not an exhaustive list, but I don't 
have much time...



  

Bug class: Stack overflow

● The traditional attack is saved return address 
overwrite, but there are data-only attacks possible 
too.

● exploit example:
– https://jon.oberheide.org/files/half-nelson.c

● Mitigations:
– stack canary (e.g. gcc's -fstack-protector(-strong))

– kernel stack location randomization

– shadow stacks

https://jon.oberheide.org/files/half-nelson.c
https://git.kernel.org/linus/8779657d29c0ebcc0c94ede4df2f497baf1b563f


  

Bug Class: Integer over/underflow

● exploit example:
– https://jon.oberheide.org/blog/2010/09/10/linux-kern

el-can-slub-overflow/
● Mitigations:

– instrument compiler to detect overflows at runtime

https://jon.oberheide.org/blog/2010/09/10/linux-kernel-can-slub-overflow/
https://jon.oberheide.org/blog/2010/09/10/linux-kernel-can-slub-overflow/


  

Bug class: Heap overflow

● exploit example:
– http://blog.includesecurity.com/2014/06/exploit-wal

kthrough-cve-2014-0196-pty-kernel-race-condition.ht
ml

– https://github.com/jonoberheide/kstructhunter

● Mitigations:
– runtime validation of variables sizes vs copy_*_user

– guard pages

– linked list validation

http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html
http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html
http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html
https://github.com/jonoberheide/kstructhunter


  

Bug class: format string injection

● exploit example:
– http://www.openwall.com/lists/oss-security/2013/06/

06/13
● Mitigations:

– drop %n entirely

● Still potentially an info leak

http://www.openwall.com/lists/oss-security/2013/06/06/13
http://www.openwall.com/lists/oss-security/2013/06/06/13
https://git.kernel.org/linus/708d96fd060bd1e729fc93048cea8901f8bacb7c


  

Bug class: kernel pointer leak

● exploit example:
– examples are legion

– http://vulnfactory.org/exploits/alpha-omega.c

– /proc entries, INET_DIAG, slabinfo

● Mitigations:
– kptr_restrict too weak

– detect seq_file + %p and block output

http://vulnfactory.org/exploits/alpha-omega.c
https://git.kernel.org/linus/455cd5ab305c90ffc422dd2e0fb634730942b257


  

Bug class: uninitialized variables

● This is not just an information leak!
● exploit example:

– https://outflux.net/slides/2011/defcon/kernel-exploita
tion.pdf

● Mitigations:
– clear kernel stack between system calls

https://outflux.net/slides/2011/defcon/kernel-exploitation.pdf
https://outflux.net/slides/2011/defcon/kernel-exploitation.pdf


  

Exploitation: finding the kernel

● exploit example:
– so many ways, see “kernel pointer leak” above

– /proc/kallsyms, /proc/modules

– https://github.com/jonoberheide/ksymhunter

● Mitigations:
– hide symbols and kernel pointers

– kernel ASLR

– runtime randomization of kernel functions

– X^R memory

– structure layout randomization

● Can this class of exploit ever be killed? Have to take it in pieces.

https://github.com/jonoberheide/ksymhunter
https://git.kernel.org/linus/8ab3820fd5b2896d66da7bb2a906bc382e63e7bc


  

Exploitation: Direct text overwrite

● I shouldn't even have to mention this!
● exploit example:

– patch setuid to always succeed

● Mitigations:
– W^X kernel page table permission



  

Exploitation: Function ptr overwrite

● This includes things like vector tables, descriptor 
tables (which should also be hidden to avoid 
information leaks)

● exploit example:
– https://outflux.net/blog/archives/2010/10/19/cve-2010-2963

-v4l-compat-exploit/
– https://blogs.oracle.com/ksplice/entry/anatomy_of_an_expl

oit_cve
● Mitigations:

– constify function pointer tables

– temporarily make targets writable

https://outflux.net/blog/archives/2010/10/19/cve-2010-2963-v4l-compat-exploit/
https://outflux.net/blog/archives/2010/10/19/cve-2010-2963-v4l-compat-exploit/
https://blogs.oracle.com/ksplice/entry/anatomy_of_an_exploit_cve
https://blogs.oracle.com/ksplice/entry/anatomy_of_an_exploit_cve


  

Exploitation: Userspace execution

● exploit example:
– see almost all previous examples

● Mitigations:
– hardware segmentation: SMEP, PXN

– instrument compiler to set high bit on function calls

– emulate memory segmentation via separate page 
tables



  

Exploitation: Userspace data

● exploit example:
– https://github.com/geekben/towelroot/blob/master/to

welroot.c
– http://labs.bromium.com/2015/02/02/exploiting-badire

t-vulnerability-cve-2014-9322-linux-kernel-privilege
-escalation/

● Mitigations:
– hardware segmentation: SMAP, Domains

– emulate memory segmentation via separate page 
tables

https://github.com/geekben/towelroot/blob/master/towelroot.c
https://github.com/geekben/towelroot/blob/master/towelroot.c
http://labs.bromium.com/2015/02/02/exploiting-badiret-vulnerability-cve-2014-9322-linux-kernel-privilege-escalation/
http://labs.bromium.com/2015/02/02/exploiting-badiret-vulnerability-cve-2014-9322-linux-kernel-privilege-escalation/
http://labs.bromium.com/2015/02/02/exploiting-badiret-vulnerability-cve-2014-9322-linux-kernel-privilege-escalation/


  

Exploitation: Reused code chunks

● Also known as Return Oriented Programming, 
Jump Oriented Programming, etc

● exploit example:
– http://vulnfactory.org/research/h2hc-remote.pdf

● Mitigations:
– compiler instrumentation for Control Flow Integrity

– Return Address Protection, Indirect Control Transfer 
Protection

http://vulnfactory.org/research/h2hc-remote.pdf


  

Challenge: Culture

● Conservatism
– 16 years to get symlink protections in, and that was 

just a userspace defense

● Responsibility
– We must accept the need for these features

● Sacrifice
– We must accept the technical burden



  

Challenge: Technical

● Complexity
– Very few people are proficient at developing (much 

less debugging) these features

● Innovation
– We must adapt the many existing solutions

– We can still innovate



  

Challenge: Resources

● People
– Dedicated developers

● People
– Dedicated testers

● People
– Dedicated backporters



  

Thoughts?
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