
Kernel Self Protection
Kernel Summit 2016, Santa Fe

Kees (“Case”) Cook
keescook@chromium.org

@kees_cook

http://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project
http://www.openwall.com/lists/kernel-hardening/

https://outflux.net/slides/2016/ks/kspp.pdf

mailto:keescook@chromium.org
http://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project
http://www.openwall.com/lists/kernel-hardening/
https://outflux.net/slides/2016/ks/kspp.pdf

2/18

Agenda

● Goal review
● GCC plugins
● Probabilistic protections
● Deterministic protections

3/18

Goal review

● When I talk about kernel security, I mean more than access control
and fixing bugs

● This is “kernel self-protection”
– Eliminate security bug classes

● lifetimes are long (5 years average), bugs are always present

– Eliminate exploitation methods
● reduce attack surface, create hostile environment for attacks

● Choose where to focus based on real-world exploits and low-
hanging fruit

4/18

GCC plugins

● CONFIG_GCC_PLUGINS
– tested on x86, arm, and arm64

– let's add more!

● Want to drop “depends on !COMPILE_TEST”
– Needs gcc 4.5 or newer

– Many many build systems need to add the gcc plugin headers...
● Debian/Ubuntu: gcc-$N-plugin-dev(-$arch-linux-$abi)
● Fedora: gcc-plugin-devel (not sure about cross compiler)

– When is the “best” time to land this kind of change?

5/18

Probabilistic protections

● Protections that derive their strength from some system state
being unknown to an attacker

● Weaker than “deterministic” protections since information
exposures can defeat them, though they still have real-world
value

● Familiar examples:
– stack protector (cookie value can be exposed)

– Address Space Layout Randomization (offset can be exposed)

6/18

Probabilistic:
KASLR text base

● Randomly relocates start of kernel image at boot:
CONFIG_RANDOMIZE_BASE

● x86 (v3.14), arm64 (v4.6), MIPS (v4.7)
● Lots of local exposures weaken KASLR
● Still valuable defense-in-depth
● Needs to be more than just randomized base offset
● Maybe randomize link order at boot?

7/18

Probabilistic:
KASLR memory base

● Even with text base KASLR, memory allocations for a given
system may be deterministic at boot

● Randomize page table, vmap, etc areas:
CONFIG_RANDOMIZE_MEMORY

● x86_64 (v4.8), arm64 (v4.6?)

8/18

Probabilistic:
freelist randomization

● Makes heap spraying attacks less deterministic:
CONFIG_SLAB_FREELIST_RANDOM

● SLAB (v4.7), SLUB (v4.8)

9/18

Probabilistic:
struct randomization

● The most heavily targeted things in the kernel are structures
containing function pointers

● “RANDSTRUCT” GCC plugin from grsecurity
● Automatically randomize structure layout for these structures

and manually marked ones
● Can limit randomization within cachelines

10/18

Deterministic protections

● Protections that derive their strength from organizational system
state that always blocks attackers

● Familiar examples:
– Read-only memory (writes will fail)

– Bounds-checking (large accesses fail)

11/18

Deterministic:
Kernel memory protection

● Fundamental memory integrity protection
● Poorly named: CONFIG_DEBUG_RODATA

– Not just a debug feature

– Besides making .rodata read-only, ensures memory is either
executable nor writable, never both

● Mandatory:
– x86 (v4.6), arm64 (v4.9)

– Almost: arm (v4.6 on-by-default, has corner cases)

12/18

Deterministic:
Privileged userspace access blocking

● The most common attack method is to redirect execution or data
dereferences into userspace memory

● Block kernel from direct userspace execution or read/write by segregating
userspace/kernel memory

● In hardware (years away from real-world penetration):
– x86 (SMEP and SMAP) since Skylake … no Xeons!

– arm64 (PXN and PAN) since ARMv8.1 … any manufactured?

● Emulation is fundamentally important:
– arm (v4.3): CONFIG_CPU_SW_DOMAIN_PAN

– arm64 (v4.10...): CONFIG_ARM64_SW_TTBR0_PAN

– x86 needed! (Implemented in PaX with PCIDs)

13/18

Deterministic:
vmap stack & thread_info removal

● Common attack is intentional stack exhaustion to overwrite
parts of thread_info, or reach into neighboring stacks

● vmap stack gains the vmap guard page:
CONFIG_VMAP_STACK

● thread_info removal relocates attack targets to harder-to-find
memory: CONFIG_THREAD_INFO_IN_TASK

● x86 (v4.9), arm64 (v4.10...), s390 (v4.10?)

14/18

Deterministic:
usercopy sanity checking

● Common bug is broken bounds checking on
copy_to/from_user()

● Best-effort during compile time via builtin_const checks (has
existed in various forms, but most complete since v4.8)

● Runtime checks when not builtin_const (v4.8):
CONFIG_HARDENED_USERCOPY

● Need to whitelist slab caches with “can be shared with
userspace” flag, then create “exception” API with builtin_const
bounds to bypass whitelist for known-good things like in-inode
filenames, etc.

15/18

Deterministic:
memory wiping

● Stops many forms of information leaks, blocks a few use-after-
free situations

● Page allocator can do zero-poisoning (v4.6)
● Slab allocator has poisoning but not zeroing
● Join us Wed in the mm break-out discussion

– Slab poisoning cache blacklisting for better performance

– Too many CONFIGs and cmdline arguments to enable:
● CONFIG_DEBUG_PAGEALLOC=n, CONFIG_PAGE_POISONING=y,

CONFIG_PAGE_POISONING_NO_SANITY=y,
CONFIG_PAGE_POISONING_ZERO=y, CONFIG_SLUB_DEBUG=y

● page_poison=on slub_debug=P

16/18

Deterministic:
constification

● Attack surface reduction: extend what is read-only in the kernel
● Like “RANDSTRUCT”, the “CONSTIFY” GCC plugin from

grsecurity targets function pointer tables and manually marked
variables

● Classes of data in the kernel:
– read/write

– read-only

– read-only-after-init (v4.6, needs more users)

– read-mostly (a performance distinction...)

– write-rarely (need to make this NOT read-only precisely during updates)

17/18

Deterministic:
atomic wrap detection

● Recurring source of use-after-free flaws is wrapping atomic_t (and
family) which are very commonly used as reference counters

● No measurable performance impact and an entire class of bugs
goes away: CONFIG_HARDENED_ATOMIC
– Add atomic_wrap_t for statistical counters, or other things that don't

care

– Switch expected-to-wrap variables to atomic_wrap_t

– Trap overflow/underflow of atomic_t

● x86, arm, arm64 almost ready for review
● Other architectures can be similarly extracted from grsecurity

Questions / Comments / Flames

Kees (“Case”) Cook
keescook@chromium.org
keescook@google.com

kees@outflux.net
@kees_cook

http://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project
http://www.openwall.com/lists/kernel-hardening/

https://outflux.net/slides/2016/ks/kspp.pdf

mailto:keescook@chromium.org
mailto:keescook@google.com
mailto:kees@outflux.net
http://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project
http://www.openwall.com/lists/kernel-hardening/
https://outflux.net/slides/2016/ks/kspp.pdf

bonus slides ...

CVE lifetimes

critical & high CVE lifetimes

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

