

Brillo Kernel Maintenance

Linux Plumber's Conference 2016, Santa Fe

Kees (“Case”) Cook
keescook@google.com

@kees_cook

https://outflux.net/slides/2016/lpc/brillo.pdf

mailto:keescook@google.com
https://outflux.net/slides/2016/lpc/brillo.pdf

Agenda
● Brillo
● Existing problems
● New problems
● Solutions!
● One kernel to rule them all
● Delta reduction
● LTS to LTS upgrades
● Test test test
● Sanity check

Brillo

● IoT with an Android stack
– May not have screen for display/input

– May have GPIO or other fun buses

● Mix of vendors from handsets to embedded
● Still relatively early in development

Existing problems

● kernel prebuilts
● multiple tree origins

– upstream

– Android common

– Vendor tree

● kernel version is static to device
– must backport fixes and features

– must forward-port out-of-tree drivers

● exponential set of combinations to update/test

New problems

● Support must be at least 5 years after last
device is sold
– No one notices exponential work when it's small...

Solutions!

● One kernel: Reduce backporting work by
keeping a single kernel

● Delta reduction: Reduce forward-porting work
by keeping everything upstream

● If this is too scary … you're not testing
thoroughly enough

One kernel to rule them all

● Single in-tree kernel with Android patches and
all vendor patches

● Per-product arch and CONFIG declarations
● Vendor patches must have at least been sent

upstream, and are cherry-picked back
● Kernel is latest upstream LTS and receives

regular -stable patches
● Kernel version moves forward

Delta reduction

● Android common kernel has over 600 patches
on top of upstream

● Mattias Nissler consolidated these to under 150
patches
– fix Android userspace to not need special cases, or

use upstream alternatives

– collapse small fixes into the corresponding feature
patches and remove patch/revert pairs

– upstream any low-hanging fruit

LTS to LTS upgrades

● Forward port anything not already in next LTS
● First attempt at this went smoothly: v4.1 → v4.4

Test test test

● Afraid of regressions?
● Get code into upstream (ohai HiKey)
● Build automated tests

– If you can't tell me what you're afraid of breaking then
you can't tell me we shouldn't upgrade

– If you can't test what you're afraid of breaking, how can
you verify that it works in the first place?

– Yes, it's hard. So is everything else, but you do this once

● Test linux-next and linux-stable (kernelci.org)
● Catch things before they're in the next LTS

Sanity check

● Will this work?
– I really hope so! We have to try something to get

out of the ancient kernel quagmire and off the
backport treadmill.

● Will the vendors agree to this?
– Most already have and are fairly proactive about

upstreaming.

– Those with reservations must decide if they're more
terrified of the up-front costs of upstreaming or the
long-term costs of having a support duration way
beyond what they're used to.

Questions / Comments / Flames

Kees (“Case”) Cook
keescook@google.com

@kees_cook

https://outflux.net/slides/2016/lpc/brillo.pdf

https://goo.gl/IRlZ1B
https://android.googlesource.com/device/generic/brillo/+/master/docs/KernelDevelopmentGuide.md

mailto:keescook@google.com
https://outflux.net/slides/2016/lpc/brillo.pdf
https://goo.gl/IRlZ1B
https://android.googlesource.com/device/generic/brillo/+/master/docs/KernelDevelopmentGuide.md

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

