

Linux Kernel Self Protection Project

Kernel Recipes, Paris
September 28, 2017

Kees (“Case”) Cook
keescook@chromium.org

https://outflux.net/slides/2017/kr/kspp.pdf

mailto:keescook@chromium.org
https://outflux.net/slides/2017/kr/kspp.pdf

Agenda

● Background
– “Security” in the context of this presentation

– Why we need to change what we’re doing

– Just fixing bugs isn’t sufficient

– Upstream development model

● Kernel Self Protection Project
– Who we are

– What we’re doing

– How you can help

● Challenges

Kernel Security

● More than access control (e.g. SELinux)
● More than attack surface reduction (e.g. seccomp)
● More than bug fixing (e.g. CVEs)
● More than protecting userspace
● More than kernel integrity
● This is about Kernel Self Protection

Devices using Linux

● Servers, laptops, cars, phones, …
● >2,000,000,000 active Android devices in 2017
● Vast majority are running v3.4 (with v3.10 slowly catching up)
● Bug lifetimes are even longer than upstream
● “Not our problem”? None of this matters: even if upstream fixes

every bug found, and the fixes are magically sent to devices,
bug lifetimes are still huge.

https://www.theverge.com/2017/5/17/15654454/android-reaches-2-billion-monthly-active-users

Upstream Bug Lifetime

● In 2010 Jon Corbet researched security flaws, and found that
the average time between introduction and fix was about 5
years.

● My analysis of Ubuntu CVE tracker for the kernel from 2011
through 2017:
– Critical: 3 @ 5.3 years

– High: 59 @ 6.4 years

– Medium: 534 @ 5.6 years

– Low: 273 @ 5.6 years

CVE lifetimes

critical & high CVE lifetimes

Upstream Bug Lifetime

● The risk is not theoretical. Attackers are watching commits, and
they are better at finding bugs than we are:
– http://seclists.org/fulldisclosure/2010/Sep/268

● Most attackers are not publicly boasting about when they found
their 0-day...

http://seclists.org/fulldisclosure/2010/Sep/268

Fighting Bugs

● We’re finding them
– Static checkers: compilers, coccinelle, sparse, smatch, coverity

– Dynamic checkers: kernel, trinity, syzkaller, KASan-family

● We’re fixing them
– Ask Greg KH how many patches land in -stable

● They’ll always be around
– We keep writing them

– They exist whether we’re aware of them or not

– Whack-a-mole is not a solution

“If you are not using a stable /
 longterm kernel, your machine is
 insecure”

- Greg Kroah-Hartman

“If you are not using a stable /
 longterm kernel, your machine is
 insecure”

- Greg Kroah-Hartman

“Your machine is insecure”
- me

“If you are not using the latest
 kernel, you don't have the most
 recently added security defenses,
 which, in the face of newly
 exploited bugs, may render your
 machine less secure than it could
 have been”

- me

Analogy: 1960s Car Industry

● @mricon’s presentation at 2015 Linux Security Summit
– http://kernsec.org/files/lss2015/giant-bags-of-mostly-water.pdf

● Cars were designed to run, not to fail
● Linux now where the car industry was in 1960s

– https://www.youtube.com/watch?v=fPF4fBGNK0U

● We must handle failures (attacks) safely
– Userspace is becoming difficult to attack

– Containers paint a target on kernel

– Lives depend on Linux

http://kernsec.org/files/lss2015/giant-bags-of-mostly-water.pdf
https://www.youtube.com/watch?v=fPF4fBGNK0U

Killing bugs is nice

● Some truth to security bugs being “just normal bugs”
● Your security bug may not be my security bug
● We have little idea which bugs attackers use
● Bug might be in out-of-tree code

– Un-upstreamed vendor drivers

– Not an excuse to claim “not our problem”

Killing bug classes is better

● If we can stop an entire kind of bug from happening, we
absolutely should do so!

● Those bugs never happen again
● Not even out-of-tree code can hit them
● But we’ll never kill all bug classes

Killing exploitation is best

● We will always have bugs
● We must stop their exploitation
● Eliminate exploitation targets and methods
● Eliminate information leaks
● Eliminate anything that assists attackers
● Even if it makes development more difficult

Typical Exploit Chains

● Modern attacks tend to use more than one flaw
● Need to know where targets are
● Need to inject (or build) malicious code
● Need to locate malicious code
● Need to redirect execution to malicious code

What can we do?

● Many exploit mitigation technologies already exist (e.g.
grsecurity/PaX) or have been researched (e.g. academic
whitepapers), but many haven't been in upstream Linux kernel

● There is demand for kernel self-protection, and there is demand
for it to exist in the upstream kernel

● http://www.washingtonpost.com/sf/business/2015/11/05/net-of-in
security-the-kernel-of-the-argument/

http://www.washingtonpost.com/sf/business/2015/11/05/net-of-insecurity-the-kernel-of-the-argument/
http://www.washingtonpost.com/sf/business/2015/11/05/net-of-insecurity-the-kernel-of-the-argument/

Out-of-tree defenses?

● Some downstream kernel forks:

– RedHat (ExecShield), Ubuntu (AppArmor), Android (Samsung KNOX), grsecurity (so many things)

● If you only use the kernel, and don't develop it, you're in a better position●

– But you're depending on a downstream fork

– Fewer eyeballs (and less automated testing
infrastructure) looking for vulnerabilities

– Developing the kernel means using engineering
resources for your fork

● e.g. Android deals with multiple vendor forks already
● Hard to integrate multiple forks

● Upstreaming means:

– No more forward-porting

– More review (never perfect, of course)

Digression 1: defending against email Spam

● Normal email server communication establishment:
Client Server

[connect]

[accept]220 smtp.some.domain ESMTP ok

EHLO my.domain

250 ohai

MAIL FROM:<me@my.domain>

250 OK

RCPT TO:<you@your.domain>

250 OK

DATA

Spam bot communication

● Success, and therefore timing, isn't important to Spam bots:
Client Server

[connect]

[accept]220 smtp.some.domain ESMTP ok

EHLO my.domain

MAIL FROM:<me@my.domain>

RCPT TO:<you@your.domain>

DATA

250 ohai

250 OK

250 OK

Trivially blocking Spam bots

● Insert a short starting delay
Client Server

[connect]

[accept]

EHLO my.domain

MAIL FROM:<me@my.domain>

RCPT TO:<you@your.domain>

DATA

554 smtp.some.domain ESMTP nope

Powerful because it's not the default

● If everyone did this (i.e. it was upstream), bots would adapt
● If a defense is unexamined and/or only run by a subset of Linux

users, it may be accidentally effective due to it being different,
but may fail under closer examination

●● Though, on the flip side,
heterogeneous environments
tend to be more resilient

Digression 2: Stack Clash research in 2017

● Underlying issues were identified in 2010
– Fundamentally, if an attacker can control the memory layout of a

setuid process, they may be able to manipulate it into colliding stack
with other things, and arranging related overflows to gain execution
control.

– Linux tried to fix it with a 4K gap

– grsecurity (from 2010 through at least their last public patch) took it
further with a configurable gap, defaulting to 64K

https://www.qualys.com/2017/06/19/stack-clash/stack-clash.txt

A gap was not enough

● In addition to raising the gap size, grsecurity sensibly capped
stack size of setuid processes, just in case:

do_execveat_common(...) {

 ...

 /* limit suid stack to 8MB

 * we saved the old limits above and will restore them if this exec fails */

 if (((!uid_eq(bprm->cred->euid, current_euid())) ||

 (!gid_eq(bprm->cred->egid, current_egid()))) &&

 (old_rlim[RLIMIT_STACK].rlim_cur > (8 * 1024 * 1024)))

 current->signal->rlim[RLIMIT_STACK].rlim_cur = 8 * 1024 * 1024;

 ...

Upstreaming the setuid stack size limit

● Landed in v4.14-rc1
● 15 patches
● Reviewed by at least 7 other people
● Made the kernel smaller
● Actually keeps the stack limited for setuid exec

 16 files changed, 91 insertions(+), 159 deletions(-)

https://git.kernel.org/linus/828f4257d1d33aed0f9ef82982dcb8ace8b7fe86

Important detail: threads

● Stack rlimit is a single value shared across entire thread-group
● Exec kills all other threads (part of the “point of no return”) as

late in exec as possible
● If you check or set rlimits before the point of no return, you're

racing other threads

Thread 1: while (1) setrlimit(...);

Thread 2: while (1) setrlimit(...);

Thread 3: exec(...);

signal
…

struct rlimit[RLIM_NLIMITS];

Un-upstreamed and unexamined for seven years

$ uname -r

4.9.24-grsec+

$ ulimit -s

unlimited

$ ls -la setuid-stack

-rwsrwxr-x 1 root root 9112 Aug 11 09:17 setuid-stack

$./setuid-stack

Stack limit: 8388608

$./raise-stack ./setuid-stack

Stack limit: 18446744073709551615

Out-of-tree defenses need to be upstreamed

● While the preceding example isn't universally true for all out-of-
tree defenses, it's a good example of why upstreaming is
important, and why sometimes what looks like a tiny change
turns into much more work.

● How do we get this done?

Kernel Self Protection Project

● http://www.openwall.com/lists/kernel-hardening/
– http://www.openwall.com/lists/kernel-hardening/2015/11/05/1

● http://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project
● People interested in coding, testing, documenting, and discussing

the upstreaming of kernel self protection technologies and related
topics.

http://www.openwall.com/lists/kernel-hardening/
http://www.openwall.com/lists/kernel-hardening/2015/11/05/1
http://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project

Kernel Self Protection Project

● There are other people working on excellent technologies that
ultimately revolve around the kernel protecting userspace from
attack (e.g. brute force detection, SROP mitigations, etc)

● KSPP focuses on the kernel protecting the kernel from attack
● Currently ~12 organizations and ~10 individuals working on

about ~20 technologies
● Slow and steady

Developers under KSPP umbrella

● LF’s Core Infrastructure Initiative funded: Emese Revfy, with others pending
● Self-funded: Andy Lutomirski, Russell King, Valdis Kletnieks, Jason Cooper, Daniel Micay, David Windsor, Richard

Weinberger, Richard Fellner, Daniel Gruss, Jason A. Donenfeld, Sandy Harris, Alexander Popov
● ARM: Catalin Marinas, Mark Rutland
● Canonical: Juerg Haefliger
● Cisco: Daniel Borkmann
● Docker: Tycho Andersen
● Google: Kees Cook, Thomas Garnier, Daniel Cashman, Jeff Vander Stoep, Jann Horn, Eric Biggers
● Huawei: Li Kun
● IBM: Michael Ellerman, Heiko Carstens, Christian Borntraeger
● Imagination Technologies: Matt Redfearn
● Intel: Elena Reshetova, Hans Liljestrand, Casey Schaufler, Michael Leibowitz, Dave Hansen, Peter Zijlstra
● Linaro: Ard Biesheuvel, David Brown, Arnd Bergmann
● Linux Foundation: Greg Kroah-Hartman
● Oracle: James Morris, Quentin Casasnovas, Yinghai Lu
● RedHat: Laura Abbott, Rik van Riel, Jessica Yu, Baoquan He

Probabilistic protections

● Protections that derive their strength from some system state
being unknown to an attacker

● Weaker than “deterministic” protections since information
exposures can defeat them, though they still have real-world
value

● Familiar examples:
– stack protector (canary value can be exposed)

– Address Space Layout Randomization (offset can be exposed)

Deterministic protections

● Protections that derive their strength from organizational system
state that always blocks attackers

● Familiar examples:
– Read-only memory (writes will fail)

– Bounds-checking (large accesses fail)

 Bug classes ...

Bug class: stack overflow and exhaustion

Exploit example:
– https://jon.oberheide.org/files/half-nelson.c

● Mitigations:
– stack canaries, e.g. gcc's -fstack-protector (v2.6.30) and -fstack-

protector-strong (v3.14)

– guard pages (e.g. GRKERNSEC_KSTACKOVERFLOW)
● vmap stack (v4.9 x86, v4.14 arm64), removal of thread_info from stack

(v4.9 x86, v4.10 arm64)

– alloca checking (e.g. PAX_MEMORY_STACKLEAK): Alexander Popov

– shadow stacks (e.g. Clang SafeStack)

https://jon.oberheide.org/files/half-nelson.c

Bug class: integer over/underflow

● Exploit examples:

– https://cyseclabs.com/page?n=02012016
– http://perception-point.io/2016/01/14/analysis-and-exploi

tation-of-a-linux-kernel-vulnerability-cve-2016-0728/
● Mitigations:

– check for atomic overflow (e.g. PAX_REFCOUNT)
● refcount_t: Elena Reshetova, David Windsor, Kees Cook, Ard Biesheuvel, Li

Kun

– compiler plugin to detect multiplication overflows at runtime (e.g.
PAX_SIZE_OVERFLOW)

https://cyseclabs.com/page?n=02012016
http://perception-point.io/2016/01/14/analysis-and-exploitation-of-a-linux-kernel-vulnerability-cve-2016-0728/
http://perception-point.io/2016/01/14/analysis-and-exploitation-of-a-linux-kernel-vulnerability-cve-2016-0728/

Bug class: buffer overflows

● Exploit example:
– http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html

● Mitigations:
– runtime validation of variable size vs copy_to_user / copy_from_user size (e.g. PAX_USERCOPY)

● CONFIG_HARDENED_USERCOPY (v4.8)
● Usercopy whitelisting: David Windsor, Kees Cook
● Usercopy slab segregation: David Windsor, Kees Cook

– metadata validation (e.g. glibc's heap protections)
● linked-list hardening (from grsecurity) CONFIG_DEBUG_LIST (v4.10)
● CONFIG_SLUB_HARDENED, heap freelist obfuscation (from grsecurity): Daniel Micay, Kees Cook
● Heap canaries: Daniel Micay

– FORTIFY_SOURCE (inspired by glibc), check buffer sizes of str*/mem* functions at compile- and run-time
● CONFIG_FORTIFY_SOURCE (v4.13)
● Intra-object checking: Daniel Micay

http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html

Bug class: format string injection

● Exploit example:
– http://www.openwall.com/lists/oss-security/2013/06/06/13

● Mitigations:
– Drop %n entirely (v3.13)

– detect non-const format strings at compile time (e.g. gcc's -Wformat-
security, or better plugin)

– detect non-const format strings at run time (e.g. memory location
checking done with glibc's -D_FORITY_SOURCE=2)

http://www.openwall.com/lists/oss-security/2013/06/06/13

Bug class: kernel pointer leak

● Exploit examples:
– examples are legion: /proc (e.g. kallsyms, modules, slabinfo, iomem),

/sys, INET_DIAG (v4.1), etc

– http://vulnfactory.org/exploits/alpha-omega.c

● Mitigations:
– kptr_restrict sysctl (v2.6.38) too weak: requires dev opt-in

– remove visibility to kernel symbols (e.g. GRKERNSEC_HIDESYM)

– detect and block usage of %p or similar writes to seq_file or other
user buffers (e.g. GRKERNSEC_HIDESYM + PAX_USERCOPY)

http://vulnfactory.org/exploits/alpha-omega.c

Bug class: uninitialized variables

● This is not just an information leak!
● Exploit example:

– https://outflux.net/slides/2011/defcon/kernel-exploitation.pdf

● Mitigations:
– GCC plugin, stackleak: clear kernel stack between system calls (from

PAX_MEMORY_STACKLEAK): Alexander Popov

– GCC plugin, structleak: instrument compiler to fully initialize all
structures (from PAX_MEMORY_STRUCTLEAK): (__user v4.11,
by-reference v4.14)

https://outflux.net/slides/2011/defcon/kernel-exploitation.pdf

Bug class: use-after-free

● Exploit example:
– http://perception-point.io/2016/01/14/analysis-and-exploitation-of-a-linux-k

ernel-vulnerability-cve-2016-0728/
● Mitigations:

– clearing memory on free can stop attacks where there is no reallocation
control (e.g. PAX_MEMORY_SANITIZE)

● Zero poisoning (v4.6)

– segregating memory used by the kernel and by userspace can stop
attacks where this boundary is crossed (e.g. PAX_USERCOPY)

– randomizing heap allocations can frustrate the reallocation efforts the
attack needs to perform (e.g. OpenBSD malloc)

● Freelist randomization (SLAB: v4.7, SLUB: v4.8)

http://perception-point.io/2016/01/14/analysis-and-exploitation-of-a-linux-kernel-vulnerability-cve-2016-0728/
http://perception-point.io/2016/01/14/analysis-and-exploitation-of-a-linux-kernel-vulnerability-cve-2016-0728/

Exploit methods ...

Exploitation: finding the kernel

● Exploit examples (see “Kernel pointer leaks” above too):
– https://github.com/jonoberheide/ksymhunter

● Mitigations:
– hide symbols and kernel pointers (see “Kernel pointer leaks”)

– kernel ASLR
● text/modules base: x86 (v3.14), arm64 (v4.6), MIPS (v4.7), ARM: Ard Biesheuvel
● memory: x86 (v4.8)
● PIE: arm64 (v4.6), x86: Thomas Garnier

– runtime randomization of kernel functions

– executable-but-not-readable memory
● x86 (v4.6), arm64 (v4.9)

– per-build structure layout randomization (e.g. GRKERNSEC_RANDSTRUCT)
● manual (v4.13), automatic (v4.14)

https://github.com/jonoberheide/ksymhunter

Exploitation: direct kernel overwrite

● How is this still a problem in the 21st century?
● Exploit examples:

– Patch setuid to always succeed

– http://itszn.com/blog/?p=21 Overwrite vDSO

● Mitigations:
– Executable memory cannot be writable (CONFIG_STRICT_KERNEL_RWX)

● s390: forever ago
● x86: v3.18
● ARM: v3.19
● arm64: v4.0

http://itszn.com/blog/?p=21

Exploitation: function pointer overwrite

● Also includes things like vector tables, descriptor tables (which
can also be info leaks)

● Exploit examples:
– https://outflux.net/blog/archives/2010/10/19/cve-2010-2963-v4l-compat-e

xploit/
– https://blogs.oracle.com/ksplice/entry/anatomy_of_an_exploit_cve

● Mitigations:
– read-only function tables (e.g. PAX_CONSTIFY_PLUGIN)

– make sensitive targets that need one-time or occasional updates only
writable during updates (e.g. PAX_KERNEXEC):

● __ro_after_init (v4.6)

https://outflux.net/blog/archives/2010/10/19/cve-2010-2963-v4l-compat-exploit/
https://outflux.net/blog/archives/2010/10/19/cve-2010-2963-v4l-compat-exploit/
https://blogs.oracle.com/ksplice/entry/anatomy_of_an_exploit_cve

Exploitation: userspace execution

● Exploit example:
– See almost all previous examples

● Mitigations:
– hardware segmentation: SMEP (x86), PXN (ARM, arm64)

– emulated memory segmentation via page table swap, PCID, etc (e.g.
PAX_MEMORY_UDEREF):

● Domains (ARM: v4.3)
● TTBR0 (arm64: v4.10)
● PCID (x86): Andy Lutomirski

– compiler instrumentation to set high bit on function calls

Exploitation: userspace data

● Exploit examples:
– https://github.com/geekben/towelroot/blob/master/towelroot.c

– http://labs.bromium.com/2015/02/02/exploiting-badiret-vulnerability-cve-2014-9
322-linux-kernel-privilege-escalation/

● Mitigations:
– hardware segmentation: SMAP (x86), PAN (ARM, arm64)

– emulated memory segmentation via page table swap, PCID, etc (e.g.
PAX_MEMORY_UDEREF):

● Domains (ARM: v4.3)
● TTBR0 (arm64: v4.10)
● PCID (x86): Andy Lutomirski

– eXclusive Page Frame Ownership: Tycho Andersen, Juerg Haefliger

https://github.com/geekben/towelroot/blob/master/towelroot.c
http://labs.bromium.com/2015/02/02/exploiting-badiret-vulnerability-cve-2014-9322-linux-kernel-privilege-escalation/
http://labs.bromium.com/2015/02/02/exploiting-badiret-vulnerability-cve-2014-9322-linux-kernel-privilege-escalation/

Exploitation: reused code chunks

● Also known as Return Oriented Programming (ROP), Jump Oriented
Programming (JOP), etc

● Exploit example:
– http://vulnfactory.org/research/h2hc-remote.pdf

● Mitigations:
– JIT obfuscation (e.g. BPF_HARDEN):

● eBPF JIT hardening (v4.7)

– compiler instrumentation for Control Flow Integrity (CFI):
● Clang CFI https://clang.llvm.org/docs/ControlFlowIntegrity.html
● kCFI https://github.com/kcfi/docs
● GCC plugin: Return Address Protection, Indirect Control Transfer Protection (e.g. RAP)

https://pax.grsecurity.net/docs/PaXTeam-H2HC15-RAP-RIP-ROP.pdf

http://vulnfactory.org/research/h2hc-remote.pdf
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://github.com/kcfi/docs
https://pax.grsecurity.net/docs/PaXTeam-H2HC15-RAP-RIP-ROP.pdf

A year's worth of kernel releases ...

Added in v4.10

● PAN emulation, arm64
● thread_info relocated off stack, arm64
● Linked list hardening
● RNG seeding from UEFI, arm64
● W^X detection, arm64

https://outflux.net/blog/archives/2017/02/27/security-things-in-linux-v4-10/

Added in v4.11

● refcount_t infrastructure
● read-only usermodehelper
● structleak plugin

https://outflux.net/blog/archives/2017/05/02/security-things-in-linux-v4-11/

Added in v4.12

● read-only and fixed-location GDT, x86
● usercopy consolidation
● read-only LSM structures
● KASLR enabled by default, x86
● stack canary expanded to bit-width of host
● stack/heap gap expanded

https://outflux.net/blog/archives/2017/07/10/security-things-in-linux-v4-12/

Added in v4.13

● CONFIG_REFCOUNT_FULL
● CONFIG_FORTIFY_SOURCE
● randstruct (manual mode)
● ELF_ET_DYN_BASE lowered

https://outflux.net/blog/archives/2017/09/05/security-things-in-linux-v4-13/

Challenges ...

Challenge: Culture

● Conservatism
– 16 years to accept symlink restrictions upstream

● Responsibility
– Kernel developers must accept the need for these changes

● Sacrifice
– Kernel developers must accept the technical burden

● Patience
– Out-of-tree developers must understand how kernel is developed

Challenge: Technical

● Complexity
– Very few people are proficient at developing (much less debugging)

these features

● Innovation
– We must adapt the many existing solutions

– We must create new technologies

● Collaboration
– Explain rationale for new technologies

– Make code understandable/maintainable by other developers and
accessible across architectures

Challenge: Resources

● People
– Dedicated developers

● People
– Dedicated testers

● People
– Dedicated backporters

Thoughts?

Kees (“Case”) Cook
keescook@chromium.org
keescook@google.com

kees@outflux.net

https://outflux.net/slides/2017/kr/kspp.pdf

http://www.openwall.com/lists/kernel-hardening/
http://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project

mailto:keescook@chromium.org
mailto:keescook@google.com
mailto:kees@outflux.net
https://outflux.net/slides/2017/kr/kspp.pdf
http://www.openwall.com/lists/kernel-hardening/
http://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

