

Kernel Self Protection Project Update

Kernel Summit, Prague
Oct 25, 2017

Kees (“Case”) Cook
keescook@chromium.org

@kees_cook

https://outflux.net/slides/2017/ks/kspp.pdf

mailto:keescook@chromium.org
https://twitter.com/kees_cook
https://outflux.net/slides/2017/ks/kspp.pdf

Devices using Linux

● Servers, laptops, cars, phones, …
● >2,000,000,000 active Android devices in 2017
● Vast majority are running v3.4 (with v3.10 slowly catching up)
● Bug lifetimes on devices are even longer than on upstream

https://www.theverge.com/2017/5/17/15654454/android-reaches-2-billion-monthly-active-users

Upstream Bug Lifetime

● In 2010 Jon Corbet researched security flaws, and found that
the average time between introduction and fix was about 5
years.

● My analysis of Ubuntu CVE tracker for the kernel from 2011
through 2017:
– Critical: 3 @ 5.3 years

– High: 59 @ 6.4 years

– Medium: 534 @ 5.6 years

– Low: 273 @ 5.6 years

critical & high CVE lifetimes

Analogy: 1960s Car Industry

● @mricon’s presentation at 2015 Linux Security Summit
– http://kernsec.org/files/lss2015/giant-bags-of-mostly-water.pdf

● Cars were designed to run, not to fail
● Linux now where the car industry was in 1960s

– https://www.youtube.com/watch?v=fPF4fBGNK0U

● We must handle failures (attacks) safely
– Userspace is becoming difficult to attack

– Containers paint a target on kernel

– Lives depend on Linux

http://kernsec.org/files/lss2015/giant-bags-of-mostly-water.pdf
https://www.youtube.com/watch?v=fPF4fBGNK0U

Kernel Self Protection Project

● Kill classes of bugs
– Not even out-of-tree code can hit them!

– But... we’ll never kill all bug classes

● Eliminate methods of exploitation
– Reduce attack surface

– Create hostile environment for attacks

– But... we still need to debug the kernel

http://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project

http://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project

Developers under KSPP umbrella

● LF’s Core Infrastructure Initiative funded: Emese Revfy, with others pending
● Self-funded: Andy Lutomirski, Russell King, Valdis Kletnieks, Jason Cooper, Daniel Micay, David Windsor, Richard

Weinberger, Richard Fellner, Daniel Gruss, Jason A. Donenfeld, Sandy Harris, Alexander Popov, Tobin Harding
● ARM: Catalin Marinas, Mark Rutland
● Canonical: Juerg Haefliger
● Cisco: Daniel Borkmann
● Docker: Tycho Andersen
● Google: Kees Cook, Thomas Garnier, Daniel Cashman, Jeff Vander Stoep, Jann Horn, Eric Biggers
● Huawei: Li Kun
● IBM: Michael Ellerman, Heiko Carstens, Christian Borntraeger
● Imagination Technologies: Matt Redfearn
● Intel: Elena Reshetova, Hans Liljestrand, Casey Schaufler, Michael Leibowitz, Dave Hansen, Peter Zijlstra
● Linaro: Ard Biesheuvel, David Brown, Arnd Bergmann
● Linux Foundation: Greg Kroah-Hartman
● Oracle: James Morris, Quentin Casasnovas, Yinghai Lu
● RedHat: Laura Abbott, Rik van Riel, Jessica Yu, Baoquan He

Probabilistic protections

● Protections that derive their strength from some system state
being unknown to an attacker

● Weaker than “deterministic” protections since information
exposures can defeat them, though they still have real-world
value

● Familiar examples:
– stack protector (canary value can be exposed)

– Address Space Layout Randomization (offset can be exposed)

Deterministic protections

● Protections that derive their strength from organizational system
state that always blocks attackers

● Familiar examples:
– Read-only memory (writes will fail)

– Bounds-checking (large accesses fail)

 Bug classes ...

Bug class: stack overflow and exhaustion

Exploit example:
– https://jon.oberheide.org/files/half-nelson.c

● Mitigations:
– stack canaries, e.g. gcc's -fstack-protector (v2.6.30) and -fstack-

protector-strong (v3.14)

– guard pages (e.g. GRKERNSEC_KSTACKOVERFLOW)
● vmap stack (v4.9 x86, v4.14 arm64), removal of thread_info from stack

(v4.9 x86, v4.10 arm64)

– alloca checking (e.g. PAX_MEMORY_STACKLEAK): Alexander Popov

– shadow stacks (e.g. Clang SafeStack)

https://jon.oberheide.org/files/half-nelson.c

Bug class: integer over/underflow

● Exploit examples:

– https://cyseclabs.com/page?n=02012016
– http://perception-point.io/2016/01/14/analysis-and-exploi

tation-of-a-linux-kernel-vulnerability-cve-2016-0728/
● Mitigations:

– check for refcount overflow (e.g. PAX_REFCOUNT)
● refcount_t: Elena Reshetova, Peter Zijlstra, Hans Liljestrand, David Windsor,

Ard Biesheuvel, Li Kun

– compiler plugin to detect multiplication overflows at runtime (e.g.
PAX_SIZE_OVERFLOW, Clang -fsanitize=integer)

https://cyseclabs.com/page?n=02012016
http://perception-point.io/2016/01/14/analysis-and-exploitation-of-a-linux-kernel-vulnerability-cve-2016-0728/
http://perception-point.io/2016/01/14/analysis-and-exploitation-of-a-linux-kernel-vulnerability-cve-2016-0728/

Bug class: buffer overflows

● Exploit example:
– http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html

● Mitigations:
– runtime validation of copy_{to,from}_user() buffer sizes (e.g. PAX_USERCOPY)

● CONFIG_HARDENED_USERCOPY (v4.8)
● Usercopy whitelisting: David Windsor
● Usercopy slab segregation: David Windsor

– metadata validation (e.g. glibc's heap protections)
● linked-list hardening (from grsecurity) CONFIG_DEBUG_LIST (v4.10)
● heap freelist obfuscation (from grsecurity) CONFIG_SLUB_HARDENED (v4.14)
● Heap canaries: Daniel Micay

– FORTIFY_SOURCE (inspired by glibc), check str*/mem*() buffer sizes at compile- and run-time
● CONFIG_FORTIFY_SOURCE (v4.13)
● Intra-object checking: Daniel Micay

http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html

Bug class: format string injection

● Exploit example:
– http://www.openwall.com/lists/oss-security/2013/06/06/13

● Mitigations:
– Drop %n entirely (v3.13)

– detect non-const format strings at compile time (e.g. gcc's -Wformat-
security, or better plugin)

– detect non-const format strings at run time (e.g. memory location
checking done with glibc's -D_FORITY_SOURCE=2)

– (Can we get rid of %p? Stay tuned...)

http://www.openwall.com/lists/oss-security/2013/06/06/13

Bug class: kernel pointer exposure

● Exploit examples:
– examples are legion: /proc (e.g. kallsyms, modules, slabinfo, iomem),

/sys, INET_DIAG (v4.1), etc

– http://vulnfactory.org/exploits/alpha-omega.c

● Mitigations:
– kptr_restrict sysctl (v2.6.38) too weak: requires dev opt-in

– remove visibility to kernel symbols (e.g. GRKERNSEC_HIDESYM)

– block usage of %p or similar writes to dmesg, seq_file, or other user
buffers (e.g. GRKERNSEC_HIDESYM + PAX_USERCOPY): Tobin
Harding

http://vulnfactory.org/exploits/alpha-omega.c

Bug class: uninitialized variables

● This is not just an information exposure bug!
● Exploit example:

– https://outflux.net/slides/2011/defcon/kernel-exploitation.pdf

● Mitigations:
– GCC plugin, stackleak: clear kernel stack between system calls (from

PAX_MEMORY_STACKLEAK): Alexander Popov

– GCC plugin, structleak: instrument compiler to fully initialize all
structures (from PAX_MEMORY_STRUCTLEAK): (__user v4.11,
by-reference v4.14)

https://outflux.net/slides/2011/defcon/kernel-exploitation.pdf

Bug class: use-after-free

● Exploit example:
– http://perception-point.io/2016/01/14/analysis-and-exploitation-of-a-linux-k

ernel-vulnerability-cve-2016-0728/
● Mitigations:

– clearing memory on free can stop attacks where there is no reallocation
control (e.g. PAX_MEMORY_SANITIZE)

● Zero poisoning (v4.6)

– segregating memory used by the kernel and by userspace can stop
attacks where this boundary is crossed (e.g. PAX_USERCOPY)

– randomizing heap allocations or using quarantines can frustrate the
reallocation efforts the attack needs to perform (e.g. OpenBSD malloc)

● Freelist randomization (SLAB: v4.7, SLUB: v4.8)

http://perception-point.io/2016/01/14/analysis-and-exploitation-of-a-linux-kernel-vulnerability-cve-2016-0728/
http://perception-point.io/2016/01/14/analysis-and-exploitation-of-a-linux-kernel-vulnerability-cve-2016-0728/

Exploit methods ...

Exploitation: finding the kernel

● Exploit examples (see “Kernel pointer exposure” above too):
– https://github.com/jonoberheide/ksymhunter

● Mitigations:
– hide symbols and kernel pointers (see “Kernel pointer exposure”)

– kernel ASLR
● text/modules base: x86 (v3.14), arm64 (v4.6), MIPS (v4.7), ARM: Ard Biesheuvel
● memory: x86 (v4.8)
● PIE: arm64 (v4.6), x86: Thomas Garnier

– runtime randomization of kernel functions

– executable-but-not-readable memory
● Initial support: x86 (v4.6), arm64 (v4.9), needs real hardware and kernel support

– per-build structure layout randomization (e.g. GRKERNSEC_RANDSTRUCT)
● manual (v4.13), automatic (v4.14)

https://github.com/jonoberheide/ksymhunter

Exploitation: direct kernel overwrite

● How is this still a problem in the 21st century?
● Exploit examples:

– Patch setuid to always succeed

– http://itszn.com/blog/?p=21 Overwrite vDSO

● Mitigations:
– Executable memory cannot be writable (CONFIG_STRICT_KERNEL_RWX)

● s390: forever ago
● x86: v3.18
● ARM: v3.19
● arm64: v4.0
● powerpc64: v4.13

http://itszn.com/blog/?p=21

Exploitation: function pointer overwrite

● Also includes e.g. vector tables, descriptor tables, etc
● Exploit examples:

– https://outflux.net/blog/archives/2010/10/19/cve-2010-2963-v4l-compat-exploit/

– https://blogs.oracle.com/ksplice/entry/anatomy_of_an_exploit_cve

● Mitigations:
– read-only function tables (e.g. PAX_CONSTIFY_PLUGIN)

– make sensitive targets that need one-time or occasional updates only
writable during updates (e.g. PAX_KERNEXEC):

● __ro_after_init (v4.6)

– struct timer_list .data field removal

https://outflux.net/blog/archives/2010/10/19/cve-2010-2963-v4l-compat-exploit/
https://blogs.oracle.com/ksplice/entry/anatomy_of_an_exploit_cve

Exploitation: userspace execution

● Exploit example:
– See almost all previous examples

● Mitigations:
– hardware segregation: SMEP (x86), PXN (ARM, arm64)

– emulated memory segregation via page table swap, PCID, etc (e.g.
PAX_MEMORY_UDEREF):

● Domains (ARM: v4.3)
● TTBR0 (arm64: v4.10)
● PCID (x86): Andy Lutomirski

– compiler instrumentation to set high bit on function calls

Exploitation: userspace data

● Exploit examples:
– https://github.com/geekben/towelroot/blob/master/towelroot.c

– http://labs.bromium.com/2015/02/02/exploiting-badiret-vulnerability-cve-2014-9
322-linux-kernel-privilege-escalation/

● Mitigations:
– hardware segregation: SMAP (x86), PAN (ARM, arm64)

– emulated memory segregation via page table swap, PCID, etc (e.g.
PAX_MEMORY_UDEREF):

● Domains (ARM: v4.3)
● TTBR0 (arm64: v4.10)
● PCID (x86): Andy Lutomirski

– eXclusive Page Frame Ownership: Tycho Andersen, Juerg Haefliger

https://github.com/geekben/towelroot/blob/master/towelroot.c
http://labs.bromium.com/2015/02/02/exploiting-badiret-vulnerability-cve-2014-9322-linux-kernel-privilege-escalation/
http://labs.bromium.com/2015/02/02/exploiting-badiret-vulnerability-cve-2014-9322-linux-kernel-privilege-escalation/

Exploitation: reused code chunks

● Also known as Return Oriented Programming (ROP), Jump Oriented
Programming (JOP), etc

● Exploit example:
– http://vulnfactory.org/research/h2hc-remote.pdf

● Mitigations:
– JIT obfuscation (e.g. BPF_HARDEN):

● eBPF JIT hardening (v4.7)

– compiler instrumentation for Control Flow Integrity (CFI):
● Clang CFI https://clang.llvm.org/docs/ControlFlowIntegrity.html
● kCFI https://github.com/kcfi/docs
● GCC plugin: Return Address Protection, Indirect Control Transfer Protection (e.g. RAP)

https://pax.grsecurity.net/docs/PaXTeam-H2HC15-RAP-RIP-ROP.pdf

http://vulnfactory.org/research/h2hc-remote.pdf
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://github.com/kcfi/docs
https://pax.grsecurity.net/docs/PaXTeam-H2HC15-RAP-RIP-ROP.pdf

A year's worth of kernel releases ...

Added in v4.10

● PAN emulation, arm64
● thread_info relocated off stack, arm64
● Linked list hardening
● RNG seeding from UEFI, arm64
● W^X detection, arm64

https://outflux.net/blog/archives/2017/02/27/security-things-in-linux-v4-10/

Added in v4.11

● refcount_t infrastructure
● 2 refcount_t conversions
● read-only usermodehelper
● structleak plugin (__user mode)

https://outflux.net/blog/archives/2017/05/02/security-things-in-linux-v4-11/

Added in v4.12

● 57 refcount_t conversions
● read-only and fixed-location GDT, x86
● usercopy consolidation
● read-only LSM structures
● KASLR enabled by default, x86
● stack canary expanded to bit-width of host
● stack/heap gap expanded

https://outflux.net/blog/archives/2017/07/10/security-things-in-linux-v4-12/

Added in v4.13

● 65 refcount_t conversions
● CONFIG_REFCOUNT_FULL
● CONFIG_FORTIFY_SOURCE
● randstruct plugin (manual mode)
● ELF_ET_DYN_BASE lowered

https://outflux.net/blog/archives/2017/09/05/security-things-in-linux-v4-13/

Added in v4.14

● 3 refcount_t conversions (67 remaining; bikeshedding stall)
● randstruct plugin (automatic mode)
● SLUB freelist pointer obfuscation
● structleak plugin (by-reference mode)
● VMAP_STACK, arm64
● set_fs() removal progress
● set_fs() balance detection, x86, arm64, arm

Maybe in v4.15

● 67 refcount_t conversions!
● usercopy whitelisting
● struct timer_list .data field removal

Various soon and not-so-soon features

● stackleak plugin
● eXclusive Page Frame Owner
● KASLR, arm
● SMAP emulation, x86
● %p output hashing
● brute force detection
● write-rarely memory
● Clang plugins

● Control Flow Integrity
● integer overflow detection
● VLA removal (-Werror=vla)
● per-task stack canary, non-x86
● per-CPU page tables
● read-only page tables
● hardened slab allocator
● hypervisor magic :)

Challenges

Cultural: Conservatism, Responsibility, Sacrifice, Patience

Technical: Complexity, Innovation, Collaboration

Resources: Dedicated Developers, Reviewers, Testers, Backporters

Thoughts?

Kees (“Case”) Cook
keescook@chromium.org
keescook@google.com

kees@outflux.net

https://outflux.net/slides/2017/ks/kspp.pdf

http://www.openwall.com/lists/kernel-hardening/
http://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project

mailto:keescook@chromium.org
mailto:keescook@google.com
mailto:kees@outflux.net
https://outflux.net/slides/2017/ks/kspp.pdf
http://www.openwall.com/lists/kernel-hardening/
http://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

