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Devices using Linux

● Servers, laptops, cars, phones, …
● >2,000,000,000 active Android devices in 2017
● Vast majority are running v3.4 (with v3.10 slowly catching up)
● Bug lifetimes on devices are even longer than on upstream

https://www.theverge.com/2017/5/17/15654454/android-reaches-2-billion-monthly-active-users


  

Upstream Bug Lifetime

● In 2010 Jon Corbet researched security flaws, and found that 
the average time between introduction and fix was about 5 
years.

● My analysis of Ubuntu CVE tracker for the kernel from 2011 
through 2017:
– Critical: 3 @ 5.3 years

– High: 59 @ 6.4 years

– Medium: 534 @ 5.6 years

– Low: 273 @ 5.6 years



critical & high CVE lifetimes



  

Analogy: 1960s Car Industry

● @mricon’s presentation at 2015 Linux Security Summit
– http://kernsec.org/files/lss2015/giant-bags-of-mostly-water.pdf

● Cars were designed to run, not to fail
● Linux now where the car industry was in 1960s

– https://www.youtube.com/watch?v=fPF4fBGNK0U

● We must handle failures (attacks) safely
– Userspace is becoming difficult to attack

– Containers paint a target on kernel

– Lives depend on Linux

http://kernsec.org/files/lss2015/giant-bags-of-mostly-water.pdf
https://www.youtube.com/watch?v=fPF4fBGNK0U


  

Kernel Self Protection Project

● Kill classes of bugs
– Not even out-of-tree code can hit them!

– But... we’ll never kill all bug classes

● Eliminate methods of exploitation
– Reduce attack surface

– Create hostile environment for attacks

– But... we still need to debug the kernel

http://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project

http://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project


  

Developers under KSPP umbrella

● LF’s Core Infrastructure Initiative funded: Emese Revfy, with others pending
● Self-funded: Andy Lutomirski, Russell King, Valdis Kletnieks, Jason Cooper, Daniel Micay, David Windsor, Richard 

Weinberger, Richard Fellner, Daniel Gruss, Jason A. Donenfeld, Sandy Harris, Alexander Popov, Tobin Harding
● ARM: Catalin Marinas, Mark Rutland
● Canonical: Juerg Haefliger
● Cisco: Daniel Borkmann
● Docker: Tycho Andersen
● Google: Kees Cook, Thomas Garnier, Daniel Cashman, Jeff Vander Stoep, Jann Horn, Eric Biggers
● Huawei: Li Kun
● IBM: Michael Ellerman, Heiko Carstens, Christian Borntraeger
● Imagination Technologies: Matt Redfearn
● Intel: Elena Reshetova, Hans Liljestrand, Casey Schaufler, Michael Leibowitz, Dave Hansen, Peter Zijlstra
● Linaro: Ard Biesheuvel, David Brown, Arnd Bergmann
● Linux Foundation: Greg Kroah-Hartman
● Oracle: James Morris, Quentin Casasnovas, Yinghai Lu
● RedHat: Laura Abbott, Rik van Riel, Jessica Yu, Baoquan He



  

Probabilistic protections

● Protections that derive their strength from some system state 
being unknown to an attacker

● Weaker than “deterministic” protections since information 
exposures can defeat them, though they still have real-world 
value

● Familiar examples:
– stack protector (canary value can be exposed)

– Address Space Layout Randomization (offset can be exposed)



  

Deterministic protections

● Protections that derive their strength from organizational system 
state that always blocks attackers

● Familiar examples:
– Read-only memory (writes will fail)

– Bounds-checking (large accesses fail)



  

 Bug classes ...



  

Bug class: stack overflow and exhaustion

Exploit example:
– https://jon.oberheide.org/files/half-nelson.c

● Mitigations:
– stack canaries, e.g. gcc's -fstack-protector (v2.6.30) and -fstack-

protector-strong (v3.14)

– guard pages (e.g. GRKERNSEC_KSTACKOVERFLOW)
● vmap stack (v4.9 x86, v4.14 arm64), removal of thread_info from stack 

(v4.9 x86, v4.10 arm64)

– alloca checking (e.g. PAX_MEMORY_STACKLEAK): Alexander Popov

– shadow stacks (e.g. Clang SafeStack)

https://jon.oberheide.org/files/half-nelson.c


  

Bug class: integer over/underflow

● Exploit examples:

– https://cyseclabs.com/page?n=02012016
– http://perception-point.io/2016/01/14/analysis-and-exploi

tation-of-a-linux-kernel-vulnerability-cve-2016-0728/
● Mitigations:

– check for refcount overflow (e.g. PAX_REFCOUNT)
● refcount_t: Elena Reshetova, Peter Zijlstra, Hans Liljestrand, David Windsor, 

Ard Biesheuvel, Li Kun

– compiler plugin to detect multiplication overflows at runtime (e.g. 
PAX_SIZE_OVERFLOW, Clang -fsanitize=integer)

https://cyseclabs.com/page?n=02012016
http://perception-point.io/2016/01/14/analysis-and-exploitation-of-a-linux-kernel-vulnerability-cve-2016-0728/
http://perception-point.io/2016/01/14/analysis-and-exploitation-of-a-linux-kernel-vulnerability-cve-2016-0728/


  

Bug class: buffer overflows

● Exploit example:
– http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html

● Mitigations:
– runtime validation of copy_{to,from}_user() buffer sizes (e.g. PAX_USERCOPY)

● CONFIG_HARDENED_USERCOPY (v4.8)
● Usercopy whitelisting: David Windsor
● Usercopy slab segregation: David Windsor

– metadata validation (e.g. glibc's heap protections)
● linked-list hardening (from grsecurity) CONFIG_DEBUG_LIST (v4.10)
● heap freelist obfuscation (from grsecurity) CONFIG_SLUB_HARDENED (v4.14)
● Heap canaries: Daniel Micay

– FORTIFY_SOURCE (inspired by glibc), check str*/mem*() buffer sizes at compile- and run-time
● CONFIG_FORTIFY_SOURCE (v4.13)
● Intra-object checking: Daniel Micay

http://blog.includesecurity.com/2014/06/exploit-walkthrough-cve-2014-0196-pty-kernel-race-condition.html


  

Bug class: format string injection

● Exploit example:
– http://www.openwall.com/lists/oss-security/2013/06/06/13

● Mitigations:
– Drop %n entirely (v3.13)

– detect non-const format strings at compile time (e.g. gcc's -Wformat-
security, or better plugin)

– detect non-const format strings at run time (e.g. memory location 
checking done with glibc's -D_FORITY_SOURCE=2)

– (Can we get rid of %p? Stay tuned...)

http://www.openwall.com/lists/oss-security/2013/06/06/13


  

Bug class: kernel pointer exposure

● Exploit examples:
– examples are legion: /proc (e.g. kallsyms, modules, slabinfo, iomem), 

/sys, INET_DIAG (v4.1), etc

– http://vulnfactory.org/exploits/alpha-omega.c

● Mitigations:
– kptr_restrict sysctl (v2.6.38) too weak: requires dev opt-in

– remove visibility to kernel symbols (e.g. GRKERNSEC_HIDESYM)

– block usage of %p or similar writes to dmesg, seq_file, or other user 
buffers (e.g. GRKERNSEC_HIDESYM + PAX_USERCOPY): Tobin 
Harding

http://vulnfactory.org/exploits/alpha-omega.c


  

Bug class: uninitialized variables

● This is not just an information exposure bug!
● Exploit example:

– https://outflux.net/slides/2011/defcon/kernel-exploitation.pdf

● Mitigations:
– GCC plugin, stackleak: clear kernel stack between system calls (from 

PAX_MEMORY_STACKLEAK): Alexander Popov

– GCC plugin, structleak: instrument compiler to fully initialize all 
structures (from PAX_MEMORY_STRUCTLEAK): (__user v4.11, 
by-reference v4.14)

https://outflux.net/slides/2011/defcon/kernel-exploitation.pdf


  

Bug class: use-after-free

● Exploit example:
– http://perception-point.io/2016/01/14/analysis-and-exploitation-of-a-linux-k

ernel-vulnerability-cve-2016-0728/
● Mitigations:

– clearing memory on free can stop attacks where there is no reallocation 
control (e.g. PAX_MEMORY_SANITIZE)

● Zero poisoning (v4.6)

– segregating memory used by the kernel and by userspace can stop 
attacks where this boundary is crossed (e.g. PAX_USERCOPY)

– randomizing heap allocations or using quarantines can frustrate the 
reallocation efforts the attack needs to perform (e.g. OpenBSD malloc)

● Freelist randomization (SLAB: v4.7, SLUB: v4.8)

http://perception-point.io/2016/01/14/analysis-and-exploitation-of-a-linux-kernel-vulnerability-cve-2016-0728/
http://perception-point.io/2016/01/14/analysis-and-exploitation-of-a-linux-kernel-vulnerability-cve-2016-0728/


  

Exploit methods ...



  

Exploitation: finding the kernel

● Exploit examples (see “Kernel pointer exposure” above too):
– https://github.com/jonoberheide/ksymhunter

● Mitigations:
– hide symbols and kernel pointers (see “Kernel pointer exposure”)

– kernel ASLR
● text/modules base: x86 (v3.14), arm64 (v4.6), MIPS (v4.7), ARM: Ard Biesheuvel
● memory: x86 (v4.8)
● PIE: arm64 (v4.6), x86: Thomas Garnier

– runtime randomization of kernel functions

– executable-but-not-readable memory
● Initial support: x86 (v4.6), arm64 (v4.9), needs real hardware and kernel support

– per-build structure layout randomization (e.g. GRKERNSEC_RANDSTRUCT)
● manual (v4.13), automatic (v4.14)

https://github.com/jonoberheide/ksymhunter


  

Exploitation: direct kernel overwrite

● How is this still a problem in the 21st century?
● Exploit examples:

– Patch setuid to always succeed

– http://itszn.com/blog/?p=21  Overwrite vDSO

● Mitigations:
– Executable memory cannot be writable (CONFIG_STRICT_KERNEL_RWX)

● s390: forever ago
● x86: v3.18
● ARM: v3.19
● arm64: v4.0
● powerpc64: v4.13

http://itszn.com/blog/?p=21


  

Exploitation: function pointer overwrite

● Also includes e.g. vector tables, descriptor tables, etc
● Exploit examples:

– https://outflux.net/blog/archives/2010/10/19/cve-2010-2963-v4l-compat-exploit/

– https://blogs.oracle.com/ksplice/entry/anatomy_of_an_exploit_cve

● Mitigations:
– read-only function tables (e.g. PAX_CONSTIFY_PLUGIN)

– make sensitive targets that need one-time or occasional updates only 
writable during updates (e.g. PAX_KERNEXEC):

● __ro_after_init (v4.6)

– struct timer_list .data field removal

https://outflux.net/blog/archives/2010/10/19/cve-2010-2963-v4l-compat-exploit/
https://blogs.oracle.com/ksplice/entry/anatomy_of_an_exploit_cve


  

Exploitation: userspace execution

● Exploit example:
– See almost all previous examples

● Mitigations:
– hardware segregation: SMEP (x86), PXN (ARM, arm64)

– emulated memory segregation via page table swap, PCID, etc (e.g. 
PAX_MEMORY_UDEREF):

● Domains (ARM: v4.3)
● TTBR0 (arm64: v4.10)
● PCID (x86): Andy Lutomirski

– compiler instrumentation to set high bit on function calls



  

Exploitation: userspace data

● Exploit examples:
– https://github.com/geekben/towelroot/blob/master/towelroot.c

– http://labs.bromium.com/2015/02/02/exploiting-badiret-vulnerability-cve-2014-9
322-linux-kernel-privilege-escalation/

● Mitigations:
– hardware segregation: SMAP (x86), PAN (ARM, arm64)

– emulated memory segregation via page table swap, PCID, etc (e.g. 
PAX_MEMORY_UDEREF):

● Domains (ARM: v4.3)
● TTBR0 (arm64: v4.10)
● PCID (x86): Andy Lutomirski

– eXclusive Page Frame Ownership: Tycho Andersen, Juerg Haefliger

https://github.com/geekben/towelroot/blob/master/towelroot.c
http://labs.bromium.com/2015/02/02/exploiting-badiret-vulnerability-cve-2014-9322-linux-kernel-privilege-escalation/
http://labs.bromium.com/2015/02/02/exploiting-badiret-vulnerability-cve-2014-9322-linux-kernel-privilege-escalation/


  

Exploitation: reused code chunks

● Also known as Return Oriented Programming (ROP), Jump Oriented 
Programming (JOP), etc

● Exploit example:
– http://vulnfactory.org/research/h2hc-remote.pdf

● Mitigations:
– JIT obfuscation (e.g. BPF_HARDEN):

● eBPF JIT hardening (v4.7)

– compiler instrumentation for Control Flow Integrity (CFI):
● Clang CFI https://clang.llvm.org/docs/ControlFlowIntegrity.html
● kCFI https://github.com/kcfi/docs
● GCC plugin: Return Address Protection, Indirect Control Transfer Protection (e.g. RAP) 

https://pax.grsecurity.net/docs/PaXTeam-H2HC15-RAP-RIP-ROP.pdf

http://vulnfactory.org/research/h2hc-remote.pdf
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://github.com/kcfi/docs
https://pax.grsecurity.net/docs/PaXTeam-H2HC15-RAP-RIP-ROP.pdf


  

A year's worth of kernel releases ...



  

Added in v4.10

● PAN emulation, arm64
● thread_info relocated off stack, arm64
● Linked list hardening
● RNG seeding from UEFI, arm64
● W^X detection, arm64

https://outflux.net/blog/archives/2017/02/27/security-things-in-linux-v4-10/


  

Added in v4.11

● refcount_t infrastructure
● 2 refcount_t conversions
● read-only usermodehelper
● structleak plugin (__user mode)

https://outflux.net/blog/archives/2017/05/02/security-things-in-linux-v4-11/


  

Added in v4.12

● 57 refcount_t conversions
● read-only and fixed-location GDT, x86
● usercopy consolidation
● read-only LSM structures
● KASLR enabled by default, x86
● stack canary expanded to bit-width of host
● stack/heap gap expanded

https://outflux.net/blog/archives/2017/07/10/security-things-in-linux-v4-12/


  

Added in v4.13

● 65 refcount_t conversions
● CONFIG_REFCOUNT_FULL
● CONFIG_FORTIFY_SOURCE
● randstruct plugin (manual mode)
● ELF_ET_DYN_BASE lowered

https://outflux.net/blog/archives/2017/09/05/security-things-in-linux-v4-13/


  

Added in v4.14

● 3 refcount_t conversions (67 remaining; bikeshedding stall)
● randstruct plugin (automatic mode)
● SLUB freelist pointer obfuscation
● structleak plugin (by-reference mode)
● VMAP_STACK, arm64
● set_fs() removal progress
● set_fs() balance detection, x86, arm64, arm



  

Maybe in v4.15

● 67 refcount_t conversions!
● usercopy whitelisting
● struct timer_list .data field removal



  

Various soon and not-so-soon features

● stackleak plugin
● eXclusive Page Frame Owner
● KASLR, arm
● SMAP emulation, x86
● %p output hashing
● brute force detection
● write-rarely memory
● Clang plugins

● Control Flow Integrity
● integer overflow detection
● VLA removal (-Werror=vla)
● per-task stack canary, non-x86
● per-CPU page tables
● read-only page tables
● hardened slab allocator
● hypervisor magic :)



  

Challenges

Cultural: Conservatism, Responsibility, Sacrifice, Patience

Technical: Complexity, Innovation, Collaboration

Resources: Dedicated Developers, Reviewers, Testers, Backporters



  

Thoughts?

Kees (“Case”) Cook
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