Making C Less Dangerous

Linux Security Summit
August 27, 2018
Vancouver, Canada

Kees (“Case”) Cook
keescook@chromium.org
@kees_cook

https://outflux.net/slides/2018/Iss/danger.pdf

mailto:keescook@chromium.org
https://twitter.com/kees_cook
https://outflux.net/slides/2018/lss/danger.pdf

Agenda

« Background

- Kernel Self Protection Project
- C as afancy assembler

« Towards less dangerous C

- Variable Length Arrays are bad and slow
- Explicit switch case fall-through

- Always-initialized automatic variables

- Arithmetic overflow detection

- Hope for bounds checking

— Control Flow Integrity: forward edges

— Control Flow Integrity: backward edges
- Where are we now?

- How you can help

000-005
Unexplained
Phenomena, Soft-

ware Programming

@Rob_Russell

rfﬂih’l‘

https://twitter.com/Rob_Russell/status/1031239727595180032

Kernel Self Protection Project

https://kernsec.org/wiki/index.php/Kernel_Self Protection_Project

KSPP focuses on the kernel protecting the kernel from attack (e.qg.
refcount overflow) rather than the kernel protecting userspace from
attack (e.g. execve brute force detection) but any area of related
development is welcome

Currently ~12 organizations and ~10 individuals working on about
~20 technologies

Slow and steady

https://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project

C as a fancy assembler: almost machine code

e The kernel wants to be as fast and small as possible

« Atthe core, kernel wants to do very architecture-specific things
for memory management, interrupt handling, scheduling, ...

« No C API for setting up page tables, switching to 64-bit mode ...

leal

mov |

= 1 =

movl tMSR_EFER, %ecX
rdmsr

btsl 5 EFER_LME,
WIrmsr

C as a fancy assembler: undefined behavior

« The C langauge comes with some operational baggage, and weak
“standard” libraries

- What are the contents of “uninitialized” variables?
.. whatever was in memory from before now!

— void pointers have no type yet we can call typed functions through them?
« ... assembly doesn'’t care: everything can be an address to call!
- Why does memcpy () have no “max destination length” argument?
... Just do what | say; memory areas are all the same!
“With undefined behavior, anything is possible!”
- https: //raphllnus github. |o/programm|ng/rust/2018/08/17/undeflned -behavior.html

https://raphlinus.github.io/programming/rust/2018/08/17/undefined-behavior.html

Variable Length Arrays are bad

« Exhaust stack, linear overflow: write to things following it
« Jump over guard pages and write to things following it

* But easy to find with compiler flag: -Wvla

Size = 8192; Size = 8192;
char buf[size]; l us array[size]; guard page
é't'rcpy(buf, src, size); é{fray[big] = foo;

Variable Length Arrays are slow

« While this seems conceptually sound: more instructions to
change stack size, it seems like it would be hard to notice.

e But... 13% speed up measured during lib/bch.c VLA removal:
https://git.kernel.org/linus/02361bc77888 (lvan Djelic)

https://git.kernel.org/linus/02361bc77888

Variable Length Arrays: stop it

int void chay int

fixed-size array variable length array

Switch case fall-through: did | mean it?

« CWE-484 “Omitted Break Statement in Switch”
« Semantic weakness in C (“switch” is just assembly test/jump...)
« Commit logs with “missing break statement”. 67

Did they mean to leave
out “break;” ??

https://cwe.mitre.org/data/definitions/484.html
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/log/?qt=grep&q=missing+break+statement

Switch case fall-through: new “statement”

* Use -Wimplicit-fallthrough to add a new switch “statement”

- Actually a comment, but is parsed by compilers now, following the
lead of static checkers

« Mark all non-breaks with a “fall through” comment, for example
https://git.kernel.org/linus/4597b62f7a60 (Gustavo A. R. Silva)

/* fall through */

https://git.kernel.org/linus/4597b62f7a60

Always-initialized local variables: just do it

CWE-200 “Information Exposure”, CWE-457 “Use of Uninitialized Variable”

gcC —-finit-local-vars not upstream

Clang -fsanitize=init-local not upstream
CONFIG_GCC_PLUGIN_... [Sitti e

— STRUCTLEAK (for structs
with __user pointers)

— STRUCTLEAK_BYREF (when
passed into funcs)

- Soon, plugin to mimic
-finit-local-vars {00

https://cwe.mitre.org/data/definitions/200.html
https://cwe.mitre.org/data/definitions/457.html
https://gcc.gnu.org/ml/gcc-patches/2014-06/msg00615.html
https://github.com/AndroidHardeningArchive/platform_external_clang/commit/776a0955ef6686d23a82d2e6a3cbd4a6a882c31c

Always-initialized local variables: switch gotcha

warning: statement will never be executed [-Wswitch-unreachable]

uint32 t dsparb, dsparb2, dsparb3;

Arithmetic overflow detection: gcc?

* gcC’s -fsanitize=signed-integer-overflow (CONFIG_UBSAN)

- Only signed. Fast: in the noise. Big: warnings grow kernel image by
6% (aborts grow it by 0.1%)

« But we can use explicit single-operation helpers. To quote
Rasmus Villemoes:

So is it worth it? I think it is, if nothing else for the documentation

value of seeing

if (check add overflow(a, b, &d))
-EGOA i

d possibly wrong and/or incomplete and/or

https://git.kernel.org/linus/f0907827a8a9152aedac2833ed1b674a7b2a44f2

Arithmetic overflow detection: Clang :)

« Clang can do signhed and unsigned instrumentation:
—-fsanitize=signed-integer-overflow

—fsanitize=unsigned—integer—overflow

-fsanitiz WER
runtime error: ﬂ';“:: integer ove ow: 1 2147483647 ot be represented in type 'int'

F1 ow.C

.Cc:11:12: rllflmw erra signed integer overflow: 1 + Z 7 can ed in type '

Bounds checking: explicit checking is slow :(

« EXxplicit checks for linear overflows of SLAB objects, stack, etc
— copy_{to,from}_user () checking: <~1% performance hit
- strcpy) -family checking: ~2% performance hit

- memcpy () -family checking: ~1% performance hit
« Can we get better APIS?

- strancpy () doesn’t always NUL terminate, NUL pads entire destination
- strlcpy() reads source beyond max destination size
- strscpy() ... okay, | guess?

- How about memcpy () that takes (and updates?) destination remaining size?

https://git.kernel.org/pub/scm/linux/kernel/git/kees/linux.git/commit/?h=kspp/strcpy/bounds

Bounds checking: memory tagging :)

« Hardware memory tagging/coloring is so mu
- SPARC Application Data Integrity (ADI)
- ARM?
- Intel?

char *buf;

buf = kmalloc(128, ...); or 18
I* Ox...5...bee§0000 */ \< ot

- .ematch
buf[40] = Oxaa; /\:A_- ointer & IS

buf[130] = Oxbb; —

ch faster!

128 byte alloc (tag 3):

dé"ta

Control Flow Integrity: indirect calls

« With memory W”X, gaining execution control needs to change
function pointers saved in heap or stack, where all type
Information was lost!

backward edge

stack:

return address

CFlI, forward edges: just call pointers :(

Ignore function prototype ...

Normally just a call to a memory address:

CFlI, forward edges: enforce prototype :)

Ignore function prototype ...

Clang -fsanitize=cfi will check at runtime:

https://clang.llvm.org/docs/ControlFlowIntegrity.html

CFI, backward edges: two stacks

« Clang’s Safe Stack

- Clang: -fsanitize=safe-stack

unsafe stack:

regular stack: buffers
by-referenced vars
etc

all lnecal variahlec
CAIT TUUVUWUI vAaAalTTuAaviIiIv o

register spills

return address

safe stack:

local variables

return address safe variables

register spills
return address

https://clang.llvm.org/docs/SafeStack.html

CFI, backward edges: shadow call stack

e Clang’s Shadow Call Stack
- Clang: -fsanitize=shadow-call-stack

- Results in two stack registers: sp and unspilled x18

sp stack:

reqular stack: e
9 all local variables

register spills

all local variables etc
register spills
return address

x18 stack:

local variables
return address return address

return address

https://clang.llvm.org/docs/ShadowCallStack.html

CFI, backward edges: hardware support

« Intel CET: hardware-based read-only shadow call stack

- Implicit use of otherwise read-only shadow stack during call and ret
Instructions

« ARM v8.3a Pointer Authentication (“signed return address”)
- New instructions: paciasp and autiasp

- Clang and gcc: -msign-return-address

+autiasp

https://reviews.llvm.org/D49793

Where Is the Linux kernel now?

Variable Length Arrays

- Nearly eradicated from kernel (only handful in crypto remain)
Explicit switch case fall-through

- Steady progress on full markings (745 of 2311 remain)
Always-initialized automatic variables

- Various partial options, needs more compiler work
Arithmetic overflow detection

- Memory allocations now doing explicit overflow detection
- Needs better kernel support for Clang and gcc

Bounds checking

- Crying about performance hits

- Waiting (im)patiently for hardware support

Control Flow Integrity: forward edges

- Need Clang LTO support in kernel, but works on Android
Control Flow Integrity: backward edges

- Shadow Call Stack works on Android
- Waiting (im)patiently for hardware support

https://android-review.googlesource.com/q/topic:%22android-4.14-lto%22+(status:open%20OR%20status:merged)
https://android-review.googlesource.com/q/topic:%22android-4.14-cfi%22+(status:open%20OR%20status:merged)
https://android-review.googlesource.com/q/topic:%22android-4.14-scs%22+(status:open%20OR%20status:merged)
https://www.flickr.com/photos/wonderlane/5270711224

Challenges in Kernel Security Development

Cultural: Conservatism, Responsibility, Sacrifice, Patience
Technical: Complexity, Innovation, Collaboration
Resource: Dedicated Developers, Reviewers, Testers, Backporters

6""ﬂlm

> Kees (“Case”) Cook
keescook@chromium.org

keescook@google.com

kees@outflux.net

hitps://outflux.net/slides/2018/Iss/danger.pdi
SRS R 5 =
ht av //www openwall.com/lists/kernel-hardenin :f’“

ec org/wiki/index.php/Kernel _Self Protect

mailto:keescook@chromium.org
mailto:keescook@google.com
mailto:kees@outflux.net
https://outflux.net/slides/2018/lss/danger.pdf
http://www.openwall.com/lists/kernel-hardening/
http://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

