

The State of Kernel Self Protection

Linux Security Summit NA
August 27, 2018

Vancouver, Canada

Kees (“Case”) Cook
keescook@chromium.org

@kees_cook

https://outflux.net/slides/2018/lss/kspp.pdf

mailto:keescook@chromium.org
https://twitter.com/kees_cook
https://outflux.net/slides/2018/lss/kspp.pdf

Kernel Self Protection Project

● https://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project
● KSPP focuses on the kernel protecting the kernel from attack (e.g.

refcount overflow) rather than the kernel protecting userspace from
attack (e.g. brute force detection) but any area of related
development is welcome

● Currently ~12 organizations and ~10 individuals working on about
~20 technologies

● Slow and steady

https://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project

Upstream Bug Lifetime

● In 2010 Jon Corbet researched security flaws, and found that
the average time between introduction and fix was about 5
years.

● My analysis of Ubuntu CVE tracker for the kernel from 2011
through 2018 has now creeped up to 6 years:
– Critical: 3 @ 5.3 years
– High: 71 @ 5.9 years
– Medium: 662 @ 5.9 years
– Low: 313 @ 5.9 years

critical & high CVE lifetimes

A year's worth of kernel releases ...

v4.14

● 3 refcount_t conversions (bikeshedding stall)
● randstruct plugin (automatic mode)
● SLUB freelist pointer obfuscation
● structleak plugin (by-reference mode)

● VMAP_STACK, arm64

● set_fs() removal progress

● set_fs() balance detection, x86, arm64, arm

https://outflux.net/blog/archives/2017/11/14/security-things-in-linux-v4-14/

v4.15

● 35 refcount_t conversions (32 remaining...)
● PTI, x86
● retpoline

● struct timer_list .data field removal
● fast refcount overflow protection, x86 (also in v4.14 -stable)

● %p hashing

https://outflux.net/blog/archives/2018/02/05/security-things-in-linux-v4-15/

v4.16

● 12 refcount_t conversions (20 more?)
● PTI, arm64
● hardened usercopy whitelisting

● CONFIG_CC_STACKPROTECTOR_AUTO

https://outflux.net/blog/archives/2018/04/12/security-things-in-linux-v4-16/

v4.17

● 51 VLAs removed (80 remaining...)
● Clear stack on fork
● More fixes to stack RLIMIT on exec

● MAP_FIXED_NOREPLACE
● Unused register clearing on syscall entry, x86
● Speculative Store Bypass Disable, x86

https://outflux.net/blog/archives/2018/06/14/security-things-in-linux-v4-17/

v4.18

● 38 VLAs removed (42 remaining...)
● Arithmetic overflow detection helpers
● Allocation overflow detection refactoring
● Speculative Store Bypass Disable, arm64

https://outflux.net/blog/archives/2018/08/20/security-things-in-linux-v4-18/

Expected for v4.19

● 33 VLAs removed (9 remaining: all in crypto API)
● Shift overflow helpers
● L1TF defenses

● Restrict O_CREAT for existing files and pipes in /tmp
● Unused register clearing on syscall entry, arm64
● Speculative Store Bypass Disable, arm64

Hopefully in v4.20

● VLAs removed completely, -Wvla added
● stackleak gcc plugin (x86 and arm64)

Various soon and not-so-soon features

● Link-Time Optimization
● eXclusive Page Frame Owner
● switch fallthrough marking
● SMAP emulation, x86
● brute force detection
● write-rarely memory
● memory tagging
● KASLR, arm

● Control Flow Integrity
● integer overflow detection
● per-task stack canary, non-x86
● per-CPU page tables
● read-only page tables
● {str,mem}cpy alloc size checks
● hardened slab allocator
● hypervisor magic :)

Challenges

Cultural: Conservatism, Responsibility, Sacrifice, Patience
Technical: Complexity, Innovation, Collaboration
Resources: Dedicated Developers, Reviewers, Testers, Backporters

Thoughts?

Kees (“Case”) Cook
keescook@chromium.org
keescook@google.com

kees@outflux.net

https://outflux.net/slides/2018/lss/kspp.pdf

http://www.openwall.com/lists/kernel-hardening/
http://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project

mailto:keescook@chromium.org
mailto:keescook@google.com
mailto:kees@outflux.net
https://outflux.net/slides/2018/lss/kspp.pdf
http://www.openwall.com/lists/kernel-hardening/
http://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

