
 
 

Deep Argument Inspection

Linux Plumbers Conference 2019
Kees Cook <keescook@chromium.org>

Christian Brauner <christian.brauner@ubuntu.com>

https://outflux.net/slides/2019/lpc/deep-arg-inspection.pdf

mailto:keescook@chromium.org
https://outflux.net/slides/2019/lpc/deep-arg-inspection.pdf


 
 

use cases

● programmatic filesystem isolation
– to not depend on containers, mount namespaces, etc

● new syscall APIs require structure content analysis
– clone3, openat2

● accurate passive monitoring (“what was requested?”)

– what path was opened?
– where is the packet going?

● meaningful active monitoring (change requests)

– did the container just ask to install a kernel module that I need to do for it? or a 
mount?



 
 

background: syscall flow
● kernel entry
● ptrace entry events (blocking!)

– may change anything, including syscall number
– may skip syscall

● seccomp hooks
– may kill thread or entire process
– may skip syscall (silently or with errno)
– may log
– may send signal (which can be caught and continued from)
– may notify userspace (blocking!)
– may do ptrace event (blocking!)

● may change anything, including syscall number...
● re-run the seccomp filter now: goto “seccomp hooks” but stop any further recursion

● actual syscall function
– copy userspace memory for parsing
– parse userspace args into kernel objects
– LSM hooks (accept/reject only!)
– perform actions on kernel objects

● ptrace exit events (blocking!)
● return to userspace



 
 

ptrace is in the wrong place for 
deterministic analysis and manipulation 
of syscalls

● userspace memory is mutable by other threads until the arguments are copied 
from userspace in the body of the syscall function

● seccomp is in the wrong place too...



 
 

LSM is not syscall filtering

● LSM hook doesn’t know if called from access() or open()

– though there is an exception now for uid/gid changes SafeSetID LSM
● in the right place for deep inspection: it mediates kernel objects 

● syscall filtering really wants to be mediating kernel objects too

● there is no unprivileged LSM



 
 

should deep inspection happen via 
seccomp at all?

● there is a strong argument to made for doing deep inspection at the LSM 
level. Otherwise, there is a risk of letting userspace get sloppy: only filter 
open() for a path but not rename()



 
 

create an association between seccomp 
and LSM?
● remember that this syscall should be deeply inspected

● add seccomp LSM hook to perform seccomp inspection if indicated

– LSM hooks are only accept/reject. Is that “sufficient” for seccomp? Unlikely: some seccomp features 
expect to perform manipulations before entering a (possibly new) syscall. But let’s explore what COULD 
be done...

● add new LSM return value for “hand back to seccomp”?

● add seccomp hook at syscall exit

● could handle kill, errno, fake success

● cannot do user notification (if we want to expand it to “continue” as proposed recently)

● cannot do ptrace or signal: would need to restart syscall

● jump back to seccomp entry logic? No! just introduces the memory copying race all over
● seems like an overly complex direction and a strong indication of extreme layering violations



 
 

move seccomp?

● ABI says we must run after ptrace, so moving seccomp deeper into the 
syscall entry stack would be okay...

● adding a hook to the body of every syscall function feels completely wrong: 
more laying violations, cut/pasting bugs, etc



 
 

cache userspace memory copies?

● seccomp can examine them before syscall function entry ... but that means 
duplicating the parsing logic in seccomp that the syscall function is also 
going to do

● which could also be a new kind of race: kernel object may change between 
seccomp filter and syscall function (e.g. file rename)



 
 

move argument parsing?

● what if syscalls declare their argument types more completely to have memory copied to kernel and parsed into 
kernel objects before syscall function entry?

● what would this look like?

– some things are “just” structures that the syscall will act from (e.g. new mount API)

– some things need to be resolved into kernel objects (e.g. file handles from a path string)

● some syscalls do crazy things and walk lists of structures in userspace...

● would this be a performance issue (reading everything before you know if it will be needed)?

● is moving argument parsing an information leak?

– e.g. timing to resolve arguments between entry and seccomp filter run may leak presence of files? (I feel like 
this can already be done)

● but at least it could likely be done piecemeal across syscalls until everything was converted

● would give us a much more coherent set of metadata about syscall arguments that could be used by fuzzers, etc



 
 

ideas?

Kees Cook <keescook@chromium.org>

https://outflux.net/slides/2019/lpc/deep-arg-inspection.pdf

mailto:keescook@chromium.org
https://outflux.net/slides/2019/lpc/deep-arg-inspection.pdf

