
 
 

Security Feature Parity:
GCC and Clang

Linux Plumbers Conference 2019
Kees Cook <keescook@chromium.org>

https://outflux.net/slides/2019/lpc/gcc-clang.pdf

mailto:keescook@chromium.org
https://outflux.net/slides/2019/lpc/gcc-clang.pdf


 
 

old school security feature examples

● stack canaries: -fstack-protector-strong
● uninitialized variable analysis: -Wmaybe-uninitialized
● format string safety analysis: -Wformat-security
● read-only relocations: -Wl,-z,relro
● immediate bindings: -Wl,-z,bindnow
● Position Independent Executable to use ASLR: -Wl,-z,pie -fPIE
● Variable Length Array analysis: -Wvla



 
 

overview of newer features
gcc clang

function sections yes yes

implicit fallthrough yes yes

Link Time Optimization yes yes

stack probing yes no

Spectre v1 mitigation no yes

caller-saved register wiping patch no

stack variable auto-initialization plugin yes

structure layout randomization plugin no

signed overflow protection yes, usability issues yes, usability issues

unsigned overflow protection no yes, usability issues

backward edge CFI hardware only hardware w/ arm64 soft

forward edge CFI hardware only yes



 
 

per-function sections

● -ffunction-sections
– gcc: working!
– clang: working!

● Supports fine-grain ASLR (randomize sections at kernel boot)



 
 

switch case fallthrough markings

● -Wimplicit-fallthrough
– gcc: __attribute__((fallthrough)) and parses comments too!

– clang: __attribute__((fallthrough))

● Kernel now free of implicit fallthroughs

– Looking through the roughly 500 patches just in the last year, about 10% 
of warnings were real bugs



 
 

Link Time Optimization

● gcc: -flto
● clang: -flto or -flto=thin

● Required for software CFI
● Lots of pain to update build tooling
● Questions about C memory model vs Kernel memory model



 
 

stack probing

● gcc: -fstack-clash-protection
● clang: needed

● Defense against giant VLAs/alloca()s
● Kernel removed all VLA usage, so this is mainly a concern for userspace.



 
 

Spectre v1 mitigation

● gcc: needed
● clang: -mspeculative-load-hardening 

https://llvm.org/docs/SpeculativeLoadHardening.html

● Performance impact is relatively high, but lower than using lfence 
everywhere.

https://llvm.org/docs/SpeculativeLoadHardening.html


 
 

zero caller-saved registers on func return

● gcc: patch only

-mzero-caller-saved-regs=used

https://github.com/clearlinux-pkgs/gcc/blob/master/zero-regs-gcc8.patch
● clang: needed

● Virtually no performance impact (xor is highly pipelined), and makes sure no 
leftover register contents can be used for speculation-style attacks.

https://github.com/clearlinux-pkgs/gcc/blob/master/zero-regs-gcc8.patch


 
 

stack variable auto-initialization

● gcc: plugin only 
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/scripts/gcc-
plugins/structleak_plugin.c

● clang: -ftrivial-auto-var-init=pattern (needs ...=zero)

● Linus wants to be able to depend on zeroing in the kernel

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/scripts/gcc-plugins/structleak_plugin.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/scripts/gcc-plugins/structleak_plugin.c


 
 

structure layout randomization

● __attribute__((randomize_layout))
– gcc: plugin only 

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/scripts/g
cc-plugins/randomize_layout_plugin.c

– clang: stalled https://reviews.llvm.org/D59254

● Fun for really paranoid builds

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/scripts/gcc-plugins/randomize_layout_plugin.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/scripts/gcc-plugins/randomize_layout_plugin.c
https://reviews.llvm.org/D59254


 
 

signed overflow protection

● -fsanitize=signed-integer-overflow
– gcc: working!
– clang: working!

● Available handling modes need improvement (e.g. 6% object size increase 
just from the warning text additions). Better to have a user-defined handler.

● Would be nice to have a “warn and continue with saturated value” mode 
instead of either “die” or “warn and continue with wrapped value”. 



 
 

unsigned overflow detection

● -fsanitize=unsigned-integer-overflow
– gcc: needed
– clang: working!

● This one isn’t technically “undefined behavior”, but it certainly leads to exploitable conditions.
● Same thoughts as signed overflow:

– Available handling modes need improvement (e.g. 6% object size increase just from the 
warning text additions). Better to have a user-defined handler.

– Would be nice to have a “warn and continue with saturated value” mode instead of either 
“die” or “warn and continue with wrapped value”. 



 
 

CFI (backward edge: returns)

● hardware
– x86: CET feature bit

● no compiler support needed!
– arm64: PAC instructions

● gcc: -mbranch-protection=pac-ret
● clang: -mbranch-protection=pac-ret

– needs function attribute to disable branch-protection
● software shadow stack

– clang: -fsanitize=shadow-call-stack on arm64 only (x86: wait for 
CET?)

– gcc: needed



 
 

CFI (forward edge: indirect calls)

● hardware (coarse-grain: entry points)

– x86: ENDBR instruction
● gcc: -fcf-protection=branch
● clang: -fcf-protection=branch

– arm64: BTI instruction
● gcc: -mbranch-protection=bti
● clang: -mbranch-protection=bti

– needs function attribute to disable branch-protection
● software (fine-grain: per-function-prototype)

– clang: -fsanitize=cfi
● We really need fine-grain forward edge CFI: stops automated gadget exploitation

– https://www.usenix.org/conference/usenixsecurity19/presentation/wu-wei

https://www.usenix.org/conference/usenixsecurity19/presentation/wu-wei

