

Kernel Self-Protection Project

Linux Security Summit NA
August 21, 2019

San Diego, California

Kees (“Case”) Cook
keescook@chromium.org

@kees_cook

https://outflux.net/slides/2019/lss/kspp.pdf

mailto:keescook@chromium.org
https://twitter.com/kees_cook
https://outflux.net/slides/2019/lss/kspp.pdf

Kernel Security for this talk is ...

● More than access control (e.g. SELinux)
● More than attack surface reduction (e.g. seccomp)
● More than bug fixing (e.g. CVEs)
● More than protecting userspace
● More than kernel integrity
● This is about Kernel Self Protection

What needs securing?

● Servers, laptops, cars, phones, TVs, space stations, …
● >2,500,000,000 active Android devices in 2019

– Majority are running v3.18 (with v4.4 slowly catching up)
● Bug lifetimes are even longer than upstream
● “Not our problem”? Even if upstream fixes every bug found, and

the fixes are magically sent to devices, bug lifetimes are still
huge.

https://www.zdnet.com/article/the-iss-just-got-its-own-linux-supercomputer/
https://twitter.com/Android/status/1125822326183014401
https://developer.android.com/about/dashboards/

Upstream Bug Lifetime

● In 2010 Jon Corbet researched security flaw fixes with CVEs,
and found that the average time between introduction and fix
was about 5 years.

● My analysis of the Ubuntu CVE tracker for the kernel from 2011
through 2019 crept closer to 6 years for a while, but has now
started to diminish:
– Critical: 3 at 5.3 years average
– High: 81 at 5.4 years average
– Medium: 749 at 6.0 years average
– Low: 368 at 6.5 years average

critical & high CVE lifetimes

Attackers are watching

● The risk is not theoretical. Attackers are watching commits, and
they are better at finding bugs than we are:
– http://seclists.org/fulldisclosure/2010/Sep/268

● Most attackers are not publicly boasting about when they found
their 0-day...

http://seclists.org/fulldisclosure/2010/Sep/268

Bug fighting continues

● We’re finding them
– Static checkers: gcc, Clang, Coccinelle, Smatch, sparse, Coverity
– Dynamic checkers: kernel, KASan-family, syzkaller, trinity

● We’re fixing them
– Ask Greg KH how many patches land in -stable

● They’ll always be around
– We keep writing them
– They exist whether we’re aware of them or not
– Whack-a-mole is not a solution

Analogy: 1960s Car Industry

● Konstantin Ryabitsev’s keynote at 2015 Linux Security Summit
– http://kernsec.org/files/lss2015/giant-bags-of-mostly-water.pdf

● Cars were designed to run, not to fail
● Linux now where the car industry was in 1960s

– https://www.youtube.com/watch?v=fPF4fBGNK0U
● We must handle failures (attacks) safely

– Userspace is becoming difficult to attack
– Containers paint a target on the kernel
– Lives depend on Linux

https://twitter.com/monsieuricon
http://kernsec.org/files/lss2015/giant-bags-of-mostly-water.pdf
https://www.youtube.com/watch?v=fPF4fBGNK0U

Killing bugs is nice

● Some truth to security bugs being “just normal bugs”
● Your security bug may not be my security bug
● We have little idea which bugs most attackers use
● Bug might be in out-of-tree code

– Un-upstreamed vendor drivers
– Not an excuse to claim “not our problem”

Killing bug classes is better

● If we can stop an entire kind of bug from happening, we
absolutely should do so!

● Those bugs never happen again
● Not even out-of-tree code can hit them
● But we’ll never kill all bug classes

Killing exploitation is best

● We will always have bugs
● We must stop their exploitation
● Eliminate exploitation targets and methods
● Eliminate information exposures
● Eliminate anything that assists attackers
● Even if it makes development more difficult

REMOVE
BUGS

REMOVE
BUG

CLASSES

REMOVE
EXPLOIT
METHODS

REMOVE
C

Kernel Self-Protection Project

● KSPP focuses on the kernel protecting the kernel from attack (e.g.
refcount overflow) rather than the kernel protecting userspace from
attack (e.g. namespaces) but both and all other areas of related
development are welcome

● ~12 organizations and ~10 individuals working on ~20 technologies

 I used to say:

 Slow and steady

 but Alexander Popov
suggested a better motto:

Flexible and Persistent

https://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project

A year's worth of kernel releases ...

v4.19

● 33 VLAs removed (12 remaining: most in crypto API)

● 3 refcount_t conversions (3 bugs found via refcount_t)
● 129 implicit fallthroughs marked (3 missing breaks found)
● Shift overflow helpers
● L1TF mitigations

● Restrict O_CREAT for existing files and pipes in /tmp
● Unused register clearing on syscall entry, arm64

https://outflux.net/blog/archives/2018/10/22/security-things-in-linux-v4-19/

v4.20

● All VLAs removed! Building with -Wvla by default

● 7 refcount_t conversions (2 bugs found via refcount_t)
● 59 implicit fallthroughs marked (2 missing breaks found)
● stackleak plugin
● per-task stack canary, powerpc
● jump labels read-only after init
● STIBP mitigations

● raise copy_{to,from}_user() kernel address faults

https://outflux.net/blog/archives/2018/12/24/security-things-in-linux-v4-20/

v5.0

● 2 refcount_t conversions (5 bugs found via refcount_t)
● 56 implicit fallthroughs marked (3 missing breaks found)
● read-only linear mapping, arm64
● per-task canary, arm & arm64
● kernel top byte ignore, arm64
● userspace PAC, arm64
● kernel-only platform keyring

https://outflux.net/blog/archives/2019/03/12/security-things-in-linux-v5-0/

v5.1

● 13 refcount_t conversions (6 bugs found via refcount_t)
● 100 implicit fallthroughs marked (10 missing breaks found)

● pidfd from /proc, pidfd_send_signal() for ... sending signals

● heap mapping validations (2 bugs immediately found)
● LSM stacking, shared security blobs
● SafeSetID LSM
● stack variable auto-init GCC plugin now covers scalars

https://outflux.net/blog/archives/2019/05/27/security-things-in-linux-v5-1/

v5.2

● 1 refcount_t conversion

● 71 implicit fallthroughs marked (6 missing breaks found)

● pidfd from clone() via CLONE_PIDFD
● page allocator freelist randomization
● stack variable auto-initialization with Clang
● KUAP on powerpc (like SMAP on x86)
● MDS mitigations

● userfaultfd sysctl knob

● temporary mm for kernel text poking

https://outflux.net/blog/archives/2019/07/17/security-things-in-linux-v5-2/

Expected for v5.3

● Building with -Wimplicit-fallthrough by default! (last 69
marked and 7 missing breaks found)

● 2 refcount_t conversions (1 bug found via refcount_t)
● pidfd from pidfd_open()
● cr4, cr0 pinning on x86
● heap auto initialization

● additional kfree() sanity checking

Planned for v5.4

● pidfd with waitid() via P_PIDFD
● kernel lockdown LSM

● stracpy() for char arrays

● strscpy() INT_MAX test

Various soon and not-so-soon features

● O_BENEATH and friends
● Link-Time Optimization
● memory tagging
● eXclusive Page Frame Owner
● SMAP emulation, x86
● brute force detection
● write-rarely memory
● KASLR, arm

● integer overflow detection
● Control Flow Integrity
● {str,mem}cpy alloc size checks
● fine-grained KASLR
● per-CPU page tables
● read-only page tables
● hardened slab allocator
● hypervisor magic :)

Challenges

Cultural: Conservatism, Responsibility, Sacrifice, Patience

Technical: Complexity, Innovation, Collaboration

Resources: Dedicated Developers, Reviewers, Testers, Backporters

Thoughts?
Kees (“Case”) Cook

keescook@chromium.org
keescook@google.com

kees@outflux.net

@kees_cook

https://outflux.net/slides/2019/lss/kspp.pdf

https://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project
http://www.openwall.com/lists/kernel-hardening/

##linux-hardened on Freenode

mailto:keescook@chromium.org
mailto:keescook@google.com
mailto:kees@outflux.net
https://outflux.net/slides/2019/lss/kspp.pdf
https://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project
http://www.openwall.com/lists/kernel-hardening/

