

Linux Kernel Self-Protection Project
(and how we’re trying to make C less dangerous)

UC Santa Cruz, Open Source Programming
February 26, 2019

Kees (“Case”) Cook
keescook@chromium.org

@kees_cook

https://outflux.net/slides/2019/uc/kspp.pdf

mailto:keescook@chromium.org
https://twitter.com/kees_cook
https://outflux.net/slides/2019/uc/kspp.pdf

Agenda

● Background
– Kernel Self Protection Project
– C as a fancy assembler

● Towards less dangerous C
– Variable Length Arrays are bad and slow
– Explicit switch case fall-through
– Always-initialized automatic variables
– Arithmetic overflow detection
– Hope for bounds checking
– Control Flow Integrity: forward edges
– Control Flow Integrity: backward edges
– Where are we now?
– How you can help

@Rob_Russell

https://twitter.com/Rob_Russell/status/1031239727595180032

Kernel Security for this talk is ...

● More than access control (e.g. SELinux)
● More than attack surface reduction (e.g. seccomp)
● More than bug fixing (e.g. CVEs)
● More than protecting userspace (e.g. namespaces)
● More than kernel integrity/roots of trust (e.g. TPM)
● This is about Kernel Self Protection

What needs securing?

● Servers, laptops, cars, phones, TVs, space stations, …
● >2,000,000,000 active Android devices in 2017

– Majority are running v3.10 (with v3.18 slowly catching up)
● Bug lifetimes are even longer than upstream
● “Not our problem”? Even if upstream fixes every bug found, and

the fixes are magically sent to devices, bug lifetimes are still
huge.

https://www.zdnet.com/article/the-iss-just-got-its-own-linux-supercomputer/
https://www.theverge.com/2017/5/17/15654454/android-reaches-2-billion-monthly-active-users

Upstream Bug Lifetime

● In 2010 Jon Corbet researched security flaw fixes with CVEs,
and found that the average time between introduction and fix
was about 5 years.

● My analysis of Ubuntu CVE tracker for the kernel from 2011
through 2018 crept closer to 6 years for a while, but has now
started to diminish:
– Critical: 3 at 5.3 years average
– High: 79 at 5.6 years average
– Medium: 691 at 5.9 years average
– Low: 349 at 6.2 years average

critical & high CVE lifetimes

Attackers are watching

● The risk is not theoretical. Attackers are watching commits, and
they are better at finding bugs than we are:
– http://seclists.org/fulldisclosure/2010/Sep/268

● Most attackers are not publicly boasting about when they found
their 0-day...

http://seclists.org/fulldisclosure/2010/Sep/268

Bug fighting continues

● We’re finding them
– Static checkers: gcc, Clang, Coccinelle, Smatch, sparse, Coverity
– Dynamic checkers: kernel, KASan-family, syzkaller, trinity

● We’re fixing them
– Ask Greg KH how many patches land in -stable

● They’ll always be around
– We keep writing them
– They exist whether we’re aware of them or not
– Whack-a-mole is not a solution

Analogy: 1960s Car Industry

● Konstantin Ryabitsev’s keynote at 2015 Linux Security Summit
– http://kernsec.org/files/lss2015/giant-bags-of-mostly-water.pdf

● Cars were designed to run, not to fail
● Linux now where the car industry was in 1960s

– https://www.youtube.com/watch?v=fPF4fBGNK0U
● We must handle failures (attacks) safely

– Userspace is becoming difficult to attack
– Containers paint a target on the kernel
– Lives depend on Linux

https://twitter.com/monsieuricon
http://kernsec.org/files/lss2015/giant-bags-of-mostly-water.pdf
https://www.youtube.com/watch?v=fPF4fBGNK0U

Killing bugs is nice

● Some truth to security bugs being “just normal bugs”
● Your security bug may not be my security bug
● We have little idea which bugs most attackers use
● Bug might be in out-of-tree code

– Un-upstreamed vendor drivers
– Not an excuse to claim “not our problem”

Killing bug classes is better

● If we can stop an entire kind of bug from happening, we
absolutely should do so!

● Those bugs never happen again
● Not even out-of-tree code can hit them
● But we’ll never kill all bug classes

Killing exploitation is best

● We will always have bugs
● We must stop their exploitation
● Eliminate exploitation targets and methods
● Eliminate information exposures
● Eliminate anything that assists attackers
● Even if it makes development more difficult

Typical Exploit Chains

● Modern attacks tend to use more than one flaw
● Need to know where targets are
● Need to inject (or build) malicious code
● Need to locate malicious code
● Need to redirect execution to malicious code

What can we do?

● Many exploit mitigation technologies already exist (e.g.
Grsecurity/PaX) or have been researched (e.g. academic
whitepapers), but are not present in the upstream Linux kernel

● There is demand for kernel self-protection, and there is demand
for it to exist in the upstream kernel

● http://www.washingtonpost.com/sf/business/2015/11/05/net-of-in
security-the-kernel-of-the-argument/

http://www.washingtonpost.com/sf/business/2015/11/05/net-of-insecurity-the-kernel-of-the-argument/
http://www.washingtonpost.com/sf/business/2015/11/05/net-of-insecurity-the-kernel-of-the-argument/

Kernel Self Protection Project

● https://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project
● KSPP focuses on the kernel protecting the kernel from attack (e.g.

refcount overflow) rather than the kernel protecting userspace from
attack (e.g. execve brute force detection) but any area of related
development is welcome

● Currently ~12 organizations and ~10 individuals working on about
~20 technologies

● Slow and steady

https://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project

Probabilistic protections

● Protections that derive their strength from some system state
being unknown to an attacker

● Weaker than “deterministic” protections since information
exposures can defeat them, though they still have real-world
impact

● Familiar examples:
– stack protector (canary value can be exposed)
– Address Space Layout Randomization (offset can be exposed)

Deterministic protections

● Protections that derive their strength from organizational system
state that always blocks attackers

● Familiar examples:
– Read-only memory (writes will fail)
– Bounds-checking (large accesses fail)

● Using a memory-safe langauge...
– Rewrite the kernel in Rust? :(
– Let’s take some incremental steps

C as a fancy assembler: almost machine code

● The kernel wants to be as fast and small as possible
● At the core, kernel wants to do very architecture-specific things

for memory management, interrupt handling, scheduling, ...
● No C API for setting up page tables, switching to 64-bit mode …

C as a fancy assembler: undefined behavior

● The C langauge comes with some operational baggage, and weak
“standard” libraries
– What are the contents of “uninitialized” variables?

● … whatever was in memory from before now!

– void pointers have no type yet we can call typed functions through them?
● … assembly doesn’t care: everything can be an address to call!

– Why does memcpy() have no “max destination length” argument?
● … just do what I say; memory areas are all the same!

● “With undefined behavior, anything is possible!”
– https://raphlinus.github.io/programming/rust/2018/08/17/undefined-behavior.html

https://raphlinus.github.io/programming/rust/2018/08/17/undefined-behavior.html

Variable Length Arrays are bad

● Exhaust stack, linear overflow: write to things following it
● Jump over guard pages and write to things following it

● But easy to find with compiler flag: -Wvla

stack 1
…
…
...

stack 2
…
…
...

size = 8192;
...
char buf[size];
…
strcpy(buf, src, size);

stack 1
…
…
...

stack 2
…
…
...

guard page

size = 8192;
...
u8 array[size];
…
array[big] = foo;

Variable Length Arrays are slow

● This seems conceptually sound: more instructions to change
stack size, but it seems like it would be hard to measure.

● It is quite measurable … 13% speed up measured during
lib/bch.c VLA removal:

https://git.kernel.org/linus/02361bc77888 (Ivan Djelic)

 Buffer allocation | Encoding throughput (Mbit/s)

 on-stack, VLA | 3988
 on-stack, fixed | 4494
 kmalloc | 1967

https://git.kernel.org/linus/02361bc77888

Variable Length Arrays: stop it

fixed-size array variable length array

Switch case fall-through: did I mean it?

● CWE-484 “Omitted Break Statement in Switch”
● Semantic weakness in C (“switch” is just assembly test/jump...)
● Commit logs with “missing break statement”: 67

Did they mean to leave
out “break;” ??

https://cwe.mitre.org/data/definitions/484.html
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/log/?qt=grep&q=missing+break+statement

Switch case fall-through: new “statement”

● Use -Wimplicit-fallthrough to add a new switch “statement”
– Actually a comment, but is parsed by compilers now, following the

lead of static checkers
● Mark all non-breaks with a “fall through” comment, for example

https://git.kernel.org/linus/4597b62f7a60 (Gustavo A. R. Silva)

https://git.kernel.org/linus/4597b62f7a60

Always-initialized local variables: just do it

● CWE-200 “Information Exposure”, CWE-457 “Use of Uninitialized Variable”

● gcc -finit-local-vars not upstream

● Clang -fsanitize=init-local not upstream
● CONFIG_GCC_PLUGIN_...

– STRUCTLEAK (for structs
with __user pointers)

– STRUCTLEAK_BYREF (when
passed into funcs)

– Soon, plugin to mimic
-finit-local-vars too

https://cwe.mitre.org/data/definitions/200.html
https://cwe.mitre.org/data/definitions/457.html
https://gcc.gnu.org/ml/gcc-patches/2014-06/msg00615.html
https://github.com/AndroidHardeningArchive/platform_external_clang/commit/776a0955ef6686d23a82d2e6a3cbd4a6a882c31c

Always-initialized local variables: switch gotcha

warning: statement will never be executed [-Wswitch-unreachable]

Arithmetic overflow detection: gcc?

● gcc’s -fsanitize=signed-integer-overflow (CONFIG_UBSAN)
– Only signed. Fast: in the noise. Big: warnings grow kernel image by

6% (aborts grow it by 0.1%)
● But we can use explicit single-operation helpers. To quote

Rasmus Villemoes:

https://git.kernel.org/linus/f0907827a8a9152aedac2833ed1b674a7b2a44f2

Arithmetic overflow detection: Clang :)

● Clang can do signed and unsigned instrumentation:

-fsanitize=signed-integer-overflow

-fsanitize=unsigned-integer-overflow

Bounds checking: explicit checking is slow :(

● Explicit checks for linear overflows of SLAB objects, stack, etc
– copy_{to,from}_user() checking: <~1% performance hit

– strcpy()-family checking: ~2% performance hit

– memcpy()-family checking: ~1% performance hit
● Can we get better APIs?

– strcpy() is terrible

– sprintf() is bad

– memcpy() is weak

https://git.kernel.org/pub/scm/linux/kernel/git/kees/linux.git/commit/?h=kspp/strcpy/bounds

Instead of strcpy(): strscpy()
● strcpy() no bounds checking on destination nor source!

● strncpy() doesn’t always NUL terminate (good for non-C-strings, does NUL pad destination)

char dest[4];

strncpy(dest, “ohai!”, sizeof(dest)); /* unhelpfully returns dest */

dest: “o”, “h”, “a”, “i” … no trailing NUL byte :(

● strlcpy() reads source beyond max destination size (returns length of source!)

● strscpy() safest (returns bytes copied, not including NUL, or -E2BIG)

ssize_t count = strscpy(dest, “ohai!”, sizeof(dest)); /* returns -E2BIG */

dest: “o”, “h”, “a”, NUL
– Does not NUL-pad destination … if desired, add explicit memset() (kernel needs a helper for this...)

if (count > 0 && count + 1 < sizeof(dest))

 memset(dest + count + 1, 0, sizeof(dest) – count - 1);

Instead of sprintf(): scnprintf()
● sprintf() no bounds checking on destination!

● snprintf() always NUL-terminates, but returns how much it
WOULD have written :(

int count = snprintf(buf, sizeof(buf), fmt…, …);

for (i = 0; i < something; i ++)

 count += snprintf(buf + count, sizeof(buf) - count, fmt…, …);

copy_to_user(user, buf, count);
● scnprintf() always NUL-terminates, returns count of bytes copied

– Replace in above code!

Instead of memcpy(): uhhh … be … careful?

● memcpy() has no sense of destination size :(

uint8_t bytes[128];

size_t wanted, copied = 0;

for (i = 0; i < something && copied < sizeof(bytes); i ++) {

 wanted = ...;

 if (wanted > sizeof(bytes) - copied)

 wanted = sizeof(bytes) - copied;

 memcpy(bytes + copied, wanted, source);

 copied += wanted;

}

Bounds checking: memory tagging :)

● Hardware memory tagging/coloring is much faster!
– SPARC Application Data Integrity (ADI)
– ARMv8.5 Memory Tagging Extension (MTE)
– Intel? @0x…….beef0000:

 first byte of 128 byte alloc
 … data ...
@0x…….beef0040:
 … data ...
@0x…….beef007ff:
 last byte of tagged region

char *buf;

buf = kmalloc(128, …);
/* 0x...5...beef0000 */

buf[0x40] = ‘A’;
/* 0x...5...beef0040 */

buf[0xa0] = ‘A’;
/* 0x...5...beef00a0 */

@0x…….beef0080:
 first byte of next alloc
 … data …
@0x…….beef00a0:
 … data …

ok:

pointer tag matches

FAIL:
pointer tag mismatch

Tag
5

Tag
3

Control Flow Integrity: indirect calls

● With memory W^X, gaining execution control needs to change
function pointers saved in heap or stack, where all type
information was lost!

heap:

saved_actions[]
…

my_action
...

stack:
…

return address
...

int action_launch(int idx)
{

 int (*action)(struct thing *);
 int rc;
...
 action = saved_actions[idx];
 rc = action(info);
…
}

int my_action(struct thing *info)
{
 stuff;
 and;
 things;
…
 return 0;
}

forward edge

 backward edge

CFI, forward edges: just call pointers :(

Ignore function prototype …

Normally just a call to a memory address:

CFI, forward edges: enforce prototype :)

Ignore function prototype …

Clang -fsanitize=cfi will check at runtime:

https://clang.llvm.org/docs/ControlFlowIntegrity.html

CFI, backward edges: two stacks

● Clang’s Safe Stack
– Clang: -fsanitize=safe-stack

regular stack:

...
all local variables

register spills
return address

...
local variables
return address

...

safe stack:
...

safe variables
register spills

return address
...

unsafe stack:
...

buffers
by-referenced vars

etc
...

https://clang.llvm.org/docs/SafeStack.html

CFI, backward edges: shadow call stack

● Clang’s Shadow Call Stack
– Clang: -fsanitize=shadow-call-stack
– Results in two stack registers: sp and unspilled x18

regular stack:

...
all local variables

register spills
return address

...
local variables
return address

...

x18 stack:
...

return address
return address

...

sp stack:
...

all local variables
register spills

etc
...

https://clang.llvm.org/docs/ShadowCallStack.html

CFI, backward edges: hardware support

● Intel CET: hardware-based read-only shadow call stack
– Implicit use of otherwise read-only shadow stack during call and ret

instructions
● ARM v8.3a Pointer Authentication (“signed return address”)

– New instructions: paciasp and autiasp
– Clang and gcc: -msign-return-address

https://reviews.llvm.org/D49793

Where is the Linux kernel now?

● Variable Length Arrays
– Finally eradicated from kernel since v4.20 (Dec 2018)!

● Explicit switch case fall-through
– Steady progress on full markings (232 of 2311 remain)

● Always-initialized automatic variables
– Various partial options, needs more compiler work

● Arithmetic overflow detection
– Memory allocations now doing explicit overflow detection
– Needs better kernel support for Clang and gcc

● Bounds checking
– Crying about performance hits
– Waiting (im)patiently for hardware support

● Control Flow Integrity: forward edges
– Need Clang LTO support in kernel, but works on Android

● Control Flow Integrity: backward edges
– Shadow Call Stack works on Android
– Waiting (im)patiently for hardware support

https://www.flickr.com/photos/wonderlane/5270711224

https://android-review.googlesource.com/q/topic:%22android-4.14-lto%22+(status:open%20OR%20status:merged)
https://android-review.googlesource.com/q/topic:%22android-4.14-cfi%22+(status:open%20OR%20status:merged)
https://android-review.googlesource.com/q/topic:%22android-4.14-scs%22+(status:open%20OR%20status:merged)
https://www.flickr.com/photos/wonderlane/5270711224

Challenges in Kernel Security Development

Cultural: Conservatism, Responsibility, Sacrifice, Patience
Technical: Complexity, Innovation, Collaboration
Resource: Dedicated Developers, Reviewers, Testers, Backporters

Thoughts?

Kees (“Case”) Cook
keescook@chromium.org
keescook@google.com

kees@outflux.net

https://outflux.net/slides/2019/uc/kspp.pdf

http://www.openwall.com/lists/kernel-hardening/
http://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project

mailto:keescook@chromium.org
mailto:keescook@google.com
mailto:kees@outflux.net
https://outflux.net/slides/2019/uc/kspp.pdf
http://www.openwall.com/lists/kernel-hardening/
http://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

