

Security Feature Parity:
GCC and Clang

Kees Cook <keescook@chromium.org>

mailto:keescook@chromium.org

 2/17

skipping lots of “at parity”(?) features

● stack canaries: -fstack-protector -fstack-protector-strong
● uninitialized variable analysis: -Wuninitialized -Wmaybe-uninitialized
● format string safety analysis: -Wformat -Wformat-security
● read-only relocations: -Wl,-z,relro
● immediate bindings: -Wl,-z,bindnow
● Position Independent Executable to use ASLR: -Wl,-z,pie -fPIE
● Variable Length Array analysis: -Wvla
● Spectre v2:

– gcc: -mindirect-branch -mfunction-return
– clang: -mretpoline

 3/17

features needing attention
gcc clang

Link Time Optimization yes yes

stack utilization probing yes x86 yes

stack protector guard location arm64 yes, riscv proposed no

Spectre v1 mitigation no yes

caller-saved register wiping proposed no

stack variable auto-initialization plugin yes

structure layout randomization plugin no

signed overflow protection yes, usability issues yes, usability issues

unsigned overflow protection no yes, usability issues

backward edge CFI hardware only hardware w/ arm64 soft

forward edge CFI hardware only yes

flashback! 2019’s features needing attention
gcc clang

Link Time Optimization yes yes

stack utilization probing yes no

stack protector guard location

Spectre v1 mitigation no yes

caller-saved register wiping patch no

stack variable auto-initialization plugin yes

structure layout randomization plugin no

signed overflow protection yes, usability issues yes, usability issues

unsigned overflow protection no yes, usability issues

backward edge CFI hardware only hardware w/ arm64 soft

forward edge CFI hardware only yes

 5/17

features needing attention
gcc clang

Link Time Optimization yes yes

stack utilization probing yes x86 yes

stack protector guard location arm64 yes, riscv proposed no

Spectre v1 mitigation no yes

caller-saved register wiping proposed no

stack variable auto-initialization plugin yes

structure layout randomization plugin no

signed overflow protection yes, usability issues yes, usability issues

unsigned overflow protection no yes, usability issues

backward edge CFI hardware only hardware w/ arm64 soft

forward edge CFI hardware only yes

 6/17

Link Time Optimization
● gcc: -flto
● clang: -flto or -flto=thin

● Required for software-based forward edge Control Flow Integrity.
● Lots of pain to update kernel build tooling but Sami Tolvanen is

keeping it working and grinding through getting it upstream, but
only Clang is being tested.
– https://github.com/samitolvanen/linux/commits/clang-lto

https://github.com/samitolvanen/linux/commits/clang-lto

 7/17

stack utilization probing
● gcc: -fstack-clash-protection
● clang: x86 supported, other architectures needed

● Defense against giant VLAs/alloca()s
● Kernel removed all VLA usage, so this is mainly a concern for

userspace.

https://reviews.llvm.org/D68720
https://bugs.llvm.org/show_bug.cgi?id=40802

 8/17

stack protector guard location
● gcc: arm64 supported, riscv proposed

-mstack-protector-guard=sysreg

-mstack-protector-guard-reg=sp_el0

-mstack-protector-guard-offset=0

● clang: needed

● Provides per-thread stack canaries in the kernel (otherwise the canary is
a per-boot global value for all threads)

● (x86 is already supported via its existing Thread Local Storage
implementation)

https://marc.info/?l=gcc-patches&m=159462831728667&w=2
https://bugs.llvm.org/show_bug.cgi?id=47341

 9/17

Spectre v1 mitigation
● gcc: wanted? no open bug...
● clang:

-mspeculative-load-hardening

__attribute__((speculative_load_hardening))

https://llvm.org/docs/SpeculativeLoadHardening.html

● Performance impact is relatively high, but lower than using lfence
everywhere.

https://llvm.org/docs/SpeculativeLoadHardening.html

 10/17

zero caller-saved regs on func return
● gcc: proposed -fzero-call-used-regs=[skip|used-gpr|all-gpr|used|all]

earlier patch for -mzero-caller-saved-regs=used
https://github.com/clearlinux-pkgs/gcc/blob/master/0001-x86-Add-mzero-caller.patch

● clang: needed

● Virtually no performance impact (register self-xor is highly pipelined), and
strongly frustrates ROP gadget utility. Also makes sure those register contents
cannot be used for speculation-style attacks.

● https://github.com/KSPP/linux/issues/84

https://gcc.gnu.org/pipermail/gcc-patches/2020-August/551229.html
https://github.com/clearlinux-pkgs/gcc/blob/master/0001-x86-Add-mzero-caller.patch
https://bugs.llvm.org/show_bug.cgi?id=37880
https://www.semanticscholar.org/paper/Clean-the-Scratch-Registers%3A-A-Way-to-Mitigate-Rong-Xie/6f2ce4fd31baa0f6c02f9eb5c57b90d39fe5fa13
https://github.com/KSPP/linux/issues/84

 11/17

stack variable auto-initialization
● gcc: kernel plugin
● clang:

-ftrivial-auto-var-init=pattern

-ftrivial-auto-var-init=zero

● Linus wants to be able to depend on zeroing in the kernel
● The zeroing mode is now enabled by default in Android, Chrome OS, and

XNU via Clang, and the Windows kernel via VC++’s similar option
● IIUC, this feature has been getting discussed in the GCC universe, but I

can’t find public references ...

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/scripts/gcc-plugins/structleak_plugin.c
https://lore.kernel.org/lkml/CAHk-=wgTM+cN7zyUZacGQDv3DuuoA4LORNPWgb1Y_Z1p4iedNQ@mail.gmail.com/
https://lists.llvm.org/pipermail/cfe-dev/2020-April/065221.html

 12/17

structure layout randomization
__attribute__((randomize_layout))

● gcc: kernel plugin
● clang: proposed but stalled needing work

● Fun for really paranoid builds
● Most users of the features are highly interested in build diversity
● Used by at least one phone vendor

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/scripts/gcc-plugins/randomize_layout_plugin.c
https://reviews.llvm.org/D59254

 13/17

signed overflow protection
-fsanitize=signed-integer-overflow

● gcc: working!
● clang: working!

● There are, however, some behavioral caveats related to

-fno-strict-overflow (which implies -fwrapv-pointer and -fwrapv)
● Also, it would be nice to have a “warn and continue with saturated value”

mode instead of either “die” or “warn and continue with wrapped value”.

https://github.com/KSPP/linux/issues/26

 14/17

unsigned overflow detection
-fsanitize=unsigned-integer-overflow

● gcc: needed
● clang: working!

● This one isn’t technically “undefined behavior”, but it certainly leads to
exploitable (or at least unexpected) conditions.

● Same thoughts as signed overflow:
– behavioral caveats related to -fno-strict-overflow
– would be nice to have a “warn and continue with saturated value” mode

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96829

 15/17

CFI (backward edge: returns)
● hardware

– x86: CET CPU feature bit and implicit operation: no compiler support needed!
– arm64: PAC instructions, supported by both gcc and clang:

-mbranch-protection=pac-ret[+leaf]

__attribute__((target(“branch-protection=pac-ret[+leaf]”)))

● software shadow stack
– x86: none (wait for CET?)
– arm64:

● gcc: needed
● clang: -fsanitize=shadow-call-stack

 16/17

CFI (forward edge: indirect calls)
● hardware (coarse-grain: entry points)

– x86: ENDBR instruction
● gcc and clang: -fcf-protection=branch

– arm64: BTI instruction
● gcc and clang:

-mbranch-protection=bti

__attribute__((target(“branch-protection=bti”)))

● software (fine-grain: per-function-prototype)
– gcc: needed (though there is -fvtable-verify=[std|preinit|none] for C++)

– clang: -fsanitize=cfi
● We really need fine-grain forward edge CFI: stops automated gadget exploitation

– https://www.usenix.org/conference/usenixsecurity19/presentation/wu-wei

https://www.usenix.org/conference/usenixsecurity19/presentation/wu-wei

 17/17

Thank you; stay safe!

Thoughts? Questions?

Kees (“Case”) Cook

keescook@chromium.org
keescook@google.com

kees@outflux.net

@kees_cook

mailto:keescook@chromium.org
mailto:keescook@google.com
mailto:kees@outflux.net
https://twitter.com/kees_cook

