
September 29, 2021

Kees (“Case”) Cook

keescook@chromium.org

@kees_cook

https://outflux.net/slides/2021/lss/kspp.pdf

Kernel Self-Protection Project

mailto:keescook@chromium.org
https://twitter.com/kees_cook
https://outflux.net/slides/2021/lss/kspp.pdf

2 2/31

“Kernel Security” for this talk is ...
● not just access control (e.g. SELinux)
● not just attack surface reduction (e.g. seccomp)
● not just bug fixing (e.g. CVEs)
● not just protecting userspace
● not just memory integrity

 This is about Kernel Self Protection

3 3/31

What needs protecting?
● “Downstream”: servers, laptops, phones, TVs,

vehicles, space stations, Martian helicopters …
● >3 billion active Android devices in 2021

– Majority run v4.14 (released Nov 2017)

with v4.19 (Oct 2018) slowly catching up

● Most downstream bug lifetimes are even longer than upstream
– Everyone needs to run the latest kernels and test as close to linux-next as possible

https://security.googleblog.com/2021/08/linux-kernel-security-done-right.html

● Upstream devs can reasonably believe downstream bug fixing is “not our problem”
– Even if upstream fixes every bug found, and the fixes are magically sent to devices, bug

lifetimes are still huge.

https://www.zdnet.com/article/the-iss-just-got-its-own-linux-supercomputer/
https://docs.github.com/en/github/setting-up-and-managing-your-github-profile/customizing-your-profile/personalizing-your-profile#list-of-qualifying-repositories-for-mars-2020-helicopter-contributor-badge
https://www.theverge.com/2021/5/18/22440813/android-devices-active-number-smartphones-google-2021
https://gs.statcounter.com/os-version-market-share/android/mobile-tablet/worldwide
https://security.googleblog.com/2021/08/linux-kernel-security-done-right.html

4 4/31

Upstream bug lifetime: 5 ½ years
● In 2010 Jon Corbet researched security flaw fixes with assigned CVEs, and found

that the average time between introduction and fix was about 5 years.
● Starting in 2015, I began a similar analysis of the Ubuntu kernel CVE tracker. This

showed “critical” and “high” priority flaw lifetime was closer to 6 years for a while, then
went down, and has stabilized again at 5.5:
– Critical: 3 at 5.3 years average

no critical flaws since 2016’s DirtyCOW (waiting for other shoe to drop)😰

– High: 108 at 5.5 years average (+20 thanks Pandemic)😲
2020: 88 @ 5.4 (+7)

2019: 81 @ 5.4 (+10)

2018: 71 @ 5.9 (+12)

2017: 59 @ 6.4 (+25)

2016: 34 @ 6.4 (+3)
2015: 31 @ 6.3

– Medium: 1038, Low: 526
● These don’t tend to get sufficiently accurate “originating commit” analysis.

https://lwn.net/Articles/410606/
https://ubuntu.com/security/cve?q=&package=linux

Critical & High
CVE lifetimes

6 6/31

Attackers are watching
● The risk is not theoretical. Attackers are watching commits, and

they are better at finding bugs than we are:
– http://seclists.org/fulldisclosure/2010/Sep/268

● Most attackers are not publicly boasting about when they found
their 0-day...

http://seclists.org/fulldisclosure/2010/Sep/268

7 7/31

Bug fighting continues
● We’re finding them

– Static checkers: gcc, Clang, Coccinelle, Smatch, sparse, Coverity
– Dynamic checkers: kernel, KASan-family, syzkaller, stress-ng, trinity

● We’re fixing them
– Ask Greg KH how many patches land in -stable

● They’ll always be around
– We keep writing them
– They exist whether we’re aware of them or not
– Whack-a-mole is not a solution

8 8/31

Analogy: 1960s Car Industry
● Konstantin Ryabitsev’s keynote at 2015 Linux Security Summit

– http://kernsec.org/files/lss2015/giant-bags-of-mostly-water.pdf

● Cars were designed to run, not to fail
● Linux now where the car industry was in 1960s

– https://www.youtube.com/watch?v=fPF4fBGNK0U

● We must handle failures (attacks) safely
– Userspace is becoming difficult to attack
– Containers paint a target on the kernel
– Lives depend on Linux

https://twitter.com/monsieuricon
http://kernsec.org/files/lss2015/giant-bags-of-mostly-water.pdf
https://www.youtube.com/watch?v=fPF4fBGNK0U

9 9/31

Killing bugs is nice
● Some truth to security bugs being “just normal bugs”
● Your security bug may not be my security bug
● There isn’t a common theme to the bugs attackers use beyond

“whatever they can find”
● Bug might be in out-of-tree code

– Un-upstreamed vendor drivers
– Not an excuse to claim “not our problem”

10 10/31

Killing bug classes is better
● If we can stop an entire kind of bug from happening, we absolutely

should do so!
– General robustness improvements beyond security

● Those bugs never happen again (not even in out-of-tree code)
● But we’ll never kill all bug classes...

11 11/31

Killing exploitation is best
● We will always have bugs
● We must stop their exploitation
● Eliminate exploitation targets and methods
● Eliminate information exposures
● Eliminate anything that assists attackers
● Even if it makes development more difficult

12 12/31

REMOVE
BUGS

REMOVE
BUG

CLASSES

REMOVE
EXPLOIT
METHODS

REMOVE
C

● Kernel has already effectively
forked the C language

● Keep removing dangerous
things from C ...

● ... add Rust for new stuff

https://security.googleblog.com/2021/04/rust-in-linux-kernel.html

https://lca2019.linux.org.au/schedule/presentation/178/
https://security.googleblog.com/2021/04/rust-in-linux-kernel.html

13 13/31

Kernel Self-Protection Project
● KSPP focuses on the upstream Linux kernel protecting the kernel from

attack (e.g. array bounds checking) rather than the kernel protecting
userspace from attack (e.g. namespaces), but both (and all other) areas of
related development are welcome.

Mailing list archive: https://lore.kernel.org/linux-hardening/

Issue tracker: https://github.com/KSPP/linux/issues

 I used to say:

 ← Slow and Steady

 but Alexander Popov
suggested a better motto:

Flexible and Persistent →

https://kernsec.org/wiki/index.php/Kernel_Self_Protection_Project
https://lore.kernel.org/linux-hardening/
https://github.com/KSPP/linux/issues
https://a13xp0p0v.github.io/conference_talks/#stackleak-a-long-way-to-the-linux-kernel-mainline

14

Two years worth of kernel releases …

15 15/31

v5.3 (Sep 2019)
● building with -Wimplicit-fallthrough by default for GCC! (last 69 marked

and 7 missing breaks found)

● 2 refcount_t conversions (1 bug found via refcount_t)

● pidfd from pidfd_open()
● CR4, CR0 pinning on x86

● heap variable auto initialization via init_on_{alloc,free}=1 boot parameter

● additional kfree() sanity checking

● KASLR enabled by default on arm64
● hardware security embargo documentation

16 16/31

v5.4 (Nov 2019)
● pidfd with waitid() via P_PIDFD
● kernel lockdown LSM
● tagged memory relaxed syscall ABI
● boot entropy improvement
● userspace writes to swap files blocked

● limit strscpy() sizes to INT_MAX
● ld.gold support removed

● Intel TSX disabled

● ongoing refactoring: refcount_t

17 17/31

v5.5 (Jan 2020)
● restrict perf_event_open() from LSM

● generic fast full refcount_t (and more conversions)

● linker script cleanup for exception tables
● KASLR for powerpc32

● seccomp: riscv support, USER_NOTIF continuation

● EFI_RNG_PROTOCOL for x86

● FORTIFY_SOURCE for MIPS

● limit copy_{to,from}_user() size to INT_MAX
● KASan support for vmap memory
● MIPS can build with GCC plugins

● userfaultfd requires CAP_SYS_PTRACE for UFFD_FEATURE_EVENT_FORK

18 18/31

v5.6 (Mar 2020)
● WireGuard

● openat2() syscall and RESOLVE_{BENEATH,NO_SYMLINKS,...} flags

● pidfd_getfd() syscall

● openat() via io_uring
● removal of blocking random pool
● arm64: on-chip RNG support, E0PD support (constant-time memory faults)

● VMAP_STACK on powerpc32

● generic Page Table dumping
● replacing 0-length and 1-element arrays with flexible arrays refactoring begins

19 19/31

v5.7 (May 2020)
● arm64 kernel Pointer Authentication (PAC)
● BPF LSM

● execve() deadlock refactoring

● slub freelist obfuscation improvements
● riscv strict kernel memory protections

● CONFIG_UBSAN_BOUNDS split off for run-time array index bounds checking

● fixing "appending" snprintf() usage with scnprintf() refactoring begins

● ongoing refactoring: flexible arrays, refcount_t

20 20/31

v5.8 (Aug 2020)
● arm64: Branch Target Identification, Shadow Call Stack
● Kernel Concurrency Sanitizer infrastructure added

● new capabilities: CAP_PERFMON, CAP_BPF
● network RNG improvements

● fix various kernel address exposures to non-CAP_SYSLOG
● riscv W^X detection

● execve() refactoring continues

● multiple /proc instances

● set_fs() removal preparation continues

● READ_IMPLIES_EXEC removed for native 64-bit architectures

● ongoing refactoring: scnprintf() replacement, flexible arrays, refcount_t

21 21/31

v5.9 (Oct 2020)
● seccomp: USER_NOTIF file descriptor injection, more architecture support: SuperH, C-SKY, xtensa

● zero-initialize stack variables with Clang
● common syscall entry/exit routines

● SLAB kfree() hardening

● new CAP_CHECKPOINT_RESTORE capability

● debugfs boot-time visibility restriction

● stack protector support for riscv

● new tasklet API

● x86: FSGSBASE implementation, filter x86 MSR writes

● uninitialized_var() macro removed

● ongoing refactoring: function pointer cast removals, flexible arrays, scnprintf(), refcount_t

22 22/31

v5.10 (Dec 2020)
● improved prandom() (e.g. network) entropy

● SafeSetID LSM gained gid awareness
● LSM kernel file reading hooks

● set_fs() removed from x86, riscv, powerpc

● sysfs_emit() added as work-around for snprintf() usage
● nosymfollow mount option

● AMD SEV register encryption
● arm64 Memory Tagging Extension support
● static calls API for replacing global function pointers
● implicit-fallthrough vs Clang refactoring begins

● ongoing refactoring: flexible arrays, scnprintf(), refcount_t

23 23/31

v5.11 (Feb 2021)
● split CONFIG_UBSAN_MISC for other inexpensive run-time checks (e.g. shift overflow)

● arm32: signal page poisoning, KAsan support

● arm64: CONFIG_KASAN_HW_TAGS, set_fs() removed

● intra-object overflow in fortified string functions

● unprivileged_userfaultfd sysctl

● CONFIG_PAGE_POISONING_{ZERO,NO_SANITY} removed

● Syscall User Dispatch
● seccomp constant-time bitmaps

● replacing strcpy(), strlcpy(), and strncpy() with strscpy() refactoring begins

● ongoing refactoring: Clang implicit-fallthrough, flexible arrays, scnprintf(), refcount_t

24 24/31

v5.12 (Apr 2021)
● UBSAN integer overflow checks removed due to GCC 8+ breakage 😭
● KFENCE implemented for x86 and arm64 (heap OOB, UaF)

● kcmp() more generally available

● more network RNG improvements

● MOUNT_ATTR_IDMAP & mount_setattr() for user-namespace aware mounts

● per-task stack canaries on riscv
● Clang Link Time Optimization (LTO) build support
● ongoing refactoring: Clang implicit-fallthrough, flexible arrays,
scnprintf(), strscpy()

25 25/31

v5.13 (Jun 2021)
● Landlock LSM
● Clang Control Flow Integrity (CFI) for arm64
● per-syscall kernel stack offset randomization

● check /proc/$pid/attr/ writes against file opener

● /dev/kmem removed

● set_fs() removed from MIPS

● eXecute-Only Memory (XOM) for arm64 under EPAN (ARMv8.7-A)
● FORTIFY_SOURCE enabled for riscv
● x86_32 stack protector support removed for GCC < 8.1

● ongoing refactoring: Clang implicit-fallthrough, flexible arrays, scnprintf(),
strscpy()

26 26/31

v5.14 (Aug 2021)
● network RNG improvements (replace Jenkins with SipHash)

● memfd_secret() syscall to create "secret" memory areas

● VMAP_STACK for riscv

● seccomp: atomic "NOTIF_ADDFD + send reply"

● memcpy() overflow refactoring begins

● ongoing refactoring: Clang implicit-fallthrough, flexible arrays,
scnprintf(), strscpy(), refcount_t

27 27/31

Expected for v5.15 (Oct 2021?)
● another push for replacing open-coded size arithmetic with
struct_size() and related helpers begins

● kvmalloc() limited to INT_MAX
● UBSAN available on riscv

● set_fs() removed from arm32

● L1D flushing API added

● call-used register clearing (GCC 11’s -fzero-call-used-regs=used-gpr)

● ongoing refactoring: Clang implicit-fallthrough, flexible arrays,
scnprintf(), strscpy(), refcount_t, memcpy()

28 28/31

Planned for v5.16 (Jan 2022?)
● -Wimplicit-fallthrough enabled for Clang

● __alloc_size attribute

● DECLARE_FLEX_ARRAY() and removal of really weird remaining flexible arrays

● struct_group(), memset_after(), and memset_startat() for dealing with
struct-member-spanning memcpy()/memset()

● THREAD_INFO_IN_TASK for arm32

● ongoing refactoring: size arithmetic, scnprintf(), strscpy(), refcount_t,
memcpy()

29 29/31

Various soon and not-so-soon features
● more hardware memory tagging
● x86 CET/IBT
● x86 SMAP emulation

● execve() brute force detection

● write-rarely memory
● arm32 feature parity
● eXclusive Page Frame Owner

● arithmetic overflow detection

● memcpy() bounds checks

● Function Granular KASLR
● eXecute Only Memory
● read-only page tables
● type-aware slab allocator
● hypervisor magic :)

30 30/31

Challenges
Cultural: Conservatism, Responsibility, Sacrifice, Patience

Technical: Complexity, Innovation, Collaboration

Resources: Dedicated Developers, Reviewers, Testers, Backporters

31

Thoughts?
Kees (“Case”) Cook

keescook@chromium.org
keescook@google.com

kees@outflux.net

@kees_cook

https://outflux.net/slides/2021/lss/kspp.pdf

https://kernsec.org/wiki/index.php/KSPP

#linux-hardening on Libera

mailto:keescook@chromium.org
mailto:keescook@google.com
mailto:kees@outflux.net
https://outflux.net/slides/2021/lss/kspp.pdf
https://kernsec.org/wiki/index.php/KSPP

	Slide6
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

