
Progress On Bounds Checking
in C and the Linux Kernel

Kees Cook & Gustavo A. R. Silva
Linux Security Summit, North America 2023

https://outflux.net/slides/2023/lss-na/bounds-checking.pdf

https://outflux.net/slides/2023/lss-na/bounds-checking.pdf

Agenda

● Goal: memory safety
● 50 years of missing bounds checking
● Problems with existing work-arounds
● Current mitigations lack sufficient coverage
● Improve coverage: Refactor for unambiguous arrays
● Improve coverage: Annotate dynamic array sizes
● Compiler work
● Metrics!

Goal: memory safety

Bounds checking is incomplete in C

One of the more tractable topics under the umbrella of “memory safety” is simple
bounds checking: programs must not access outside a specified range of memory.
A huge portion of historical security flaws fall under this basic category, and it
could be solved by the compiler, but the standard C language is too ambiguous.

Protection can be added for arrays, as C effectively treats “array” as a pointer to
an associated fixed-size region:

char array[16]; /* 16 bytes */

But if the size isn’t compile-time fixed, there is only a bare pointer type available:

char *pointer; /* unknown region size */

Dynamically sized structures are needed

A common data storage pattern is a header followed by some number of the same data
structure, but addressing and iterating is cumbersome if they’re not part of the struct:

struct message {

unsigned long flags;

char urgency;

int item_count;

};

struct item item1;

struct item item2;

...

Header

Element count

Elements

struct message *p;
struct item *item;

p = kzalloc(sizeof(*p) +
 sizeof(struct item) * count,
 GPF_KERNEL);

item = (struct item *)(p + 1);

for (int i; i < count; i++) {
do_something(item);
item = item + 1;

}

Pointers for dynamically sized structures are wasteful

Standard C only provides a pointer, and pointing to the area of memory immediately after the
struct wastes space and requires explicit initialization:

struct message {

unsigned long flags;

char urgency;

int item_count;

struct item *items;

};

struct item item1;

struct item item2;

...

Header

Element count

Elements

Ptr to elements

struct message *p;

p = kzalloc(sizeof(*p) +
 sizeof(struct item) * count,
 GPF_KERNEL);

p->items = (struct item *)(p + 1);

for (int i; i < count; i++)
do_something(&p->items[i]);

Dynamically sized arrays are needed

Just having an array with a size that isn’t known in advance is what is needed for
this code pattern:

struct message {

unsigned long flags;

char urgency;

int item_count;

struct item items[???];

};

Header

Element count

Elements

struct message *p;

p = kzalloc(struct_size(p, items, count),
 GPF_KERNEL);

for (int i; i < count; i++)
do_something(&p->items[i]);

50 years of missing bounds checking

Working around lack of trailing dynamically sized arrays

● one-element array hack:

struct item elements[1];
○ Standard C says an array cannot be zero-sized, so C developers learning from/working on code from

the last millennium were forced to lie to the compiler and manually manage bounds.
● C90 GNU extension, zero-length arrays:

struct item elements[0];
○ Still not standard C, still lying to the compiler: it’s not zero-sized, so diagnostics can go wrong.

● C99 flexible-array member:

struct item elements[];
○ Not technically lying anymore, but still forcing compiler to be blind to actual size.

● And "oops, this used to be fixed-sized but now it's variable length” arrays

struct item elements[N...];

Problems with existing work-arounds

Problems with 1-element arrays

● Always “contribute” with size-of-one-element to the size of the enclosing
structure.

● Developers have to remember to subtract 1 from count, or sizeof(struct foo)
from sizeof(struct ancient).

● Prone to off-by-one problems.

struct ancient {
...
size_t count;
struct foo array[1];

} *p;

alloc_size = sizeof(*p) + sizeof(struct foo) * (p->count - 1);

Problems with 1-element arrays

● Tons of -Warray-bounds false positives.

struct ancient {
...
size_t count;
struct foo array[1];

} *p;

for(i = 0; i < p->count; i++) i == 0 is fine :)
p->array[i]; i >= 1 is not :/

warning: array subscript 1 is above array bounds of
‘struct foo[1]’ [-Warray-bounds]

C90 GNU extension: zero-length arrays

● Not part of the C standard.
● They don’t contribute to the size of the flexible struct.
● Slightly less buggy, but still…
● Be aware of sizeof(p->array) == 0

struct old {
...
size_t count;
struct foo array[0];

} *p;

alloc_size = sizeof(*p) + sizeof(struct foo) * p->count;

Undefined Behavior

● The compiler cannot detect dangerous code like this.
○ “Overlapping” members do not trigger compiler warnings.

● e48f129c2f20 ("[SCSI] cxgb3i: convert cdev->l2opt to use…")

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=e48f129c2f20

Undefined Behavior

● 76497732932f ("cxgb3/l2t: Fix undefined behavior")
● Kick-off of flexible array transformation in the KSPP.
● Bug introduced in 2011. Fixed in 2019.

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=76497732932f

Undefined Behavior

● f5823fe6897c ("qed: Add ll2 option to limit the number of bds per packet")
● Fake flex-array transformation from [18] to [1].

struct qed_ll2_tx_packet {
...

+ /* Flexible Array of bds_set determined by max_bds_per_packet */
 struct {
 struct core_tx_bd *txq_bd;
 dma_addr_t tx_frag;
 u16 frag_len;
- } bds_set[ETH_TX_MAX_BDS_PER_NON_LSO_PACKET];
+ } bds_set[1];
 };

#define ETH_TX_MAX_BDS_PER_NON_LSO_PACKET 18

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=f5823fe6897c

Undefined Behavior

● f5823fe6897c ("qed: Add ll2 option to limit the number of bds per packet")
● struct qed_ll2_tx_packet now contains a fake flex-array ([1] array).

struct qed_ll2_tx_queue {
...

- struct qed_ll2_tx_packet *descq_array;
+ void *descq_mem; /* memory for variable sized qed_ll2_tx_packet*/
 struct qed_ll2_tx_packet *cur_send_packet;
 struct qed_ll2_tx_packet cur_completing_packet;
 ...
 u16 cur_completing_frag_num;
 bool b_completing_packet;
};

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=f5823fe6897c

Undefined Behavior

● f5823fe6897c ("qed: Add ll2 option to limit the number of bds per packet")
● struct qed_ll2_tx_packet now contains a fake flex-array ([1] array).

struct qed_ll2_tx_queue {
...

- struct qed_ll2_tx_packet *descq_array;
+ void *descq_mem; /* memory for variable sized qed_ll2_tx_packet*/
 struct qed_ll2_tx_packet *cur_send_packet;
 struct qed_ll2_tx_packet cur_completing_packet;
 ...
 u16 cur_completing_frag_num;
 bool b_completing_packet;
};

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=f5823fe6897c

Undefined Behavior

● f5823fe6897c ("qed: Add ll2 option to limit the number of bds per packet")
● struct qed_ll2_tx_packet now contains a fake flex-array ([1] array).

struct qed_ll2_tx_queue {
...

- struct qed_ll2_tx_packet *descq_array;
+ void *descq_mem; /* memory for variable sized qed_ll2_tx_packet*/
 struct qed_ll2_tx_packet *cur_send_packet;
 struct qed_ll2_tx_packet cur_completing_packet; forgot to move this
 ... to the end
 u16 cur_completing_frag_num;
 bool b_completing_packet;
};

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=f5823fe6897c

Undefined Behavior

● a93b6a2b9f46 ("qed/qed_ll2: Replace one-element array with flexible … ")
● Bug introduced in 2017. Fixed in 2020.

struct qed_ll2_rx_queue {
...

- struct qed_ll2_tx_packet cur_completing_packet;
...
u16 cur_completing_frag_num;
bool b_completing_packet;
...

+ struct qed_ll2_tx_packet cur_completing_packet;
};

struct qed_ll2_tx_packet {

struct core_tx_bd *txq_bd;

dma_addr_t tx_frag;

u16 frag_len;

- } bds_set[1];

+ } bds_set[];

};

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=a93b6a2b9f46

The tale of sizeof() and the three trailing arrays. :)

The tale of sizeof() and the three trailing arrays. :)

● Of course, sizeof() returns different results.

sizeof(flex_struct->one_element_array) == size-of-element-type
sizeof(flex_struct->zero_length_array) == 0

The tale of sizeof() and the three trailing arrays. :)

● Of course, sizeof() returns different results.
● And that’s another source of problems.
● Found multiple issues in the kernel.

sizeof(flex_struct->one_element_array) == size-of-element-type
sizeof(flex_struct->zero_length_array) == 0
sizeof(flex_struct->flex_array_member) == ? /* error! */

error: invalid application of 'sizeof' to incomplete type

Trailing fixed-sized arrays of variable-length ;)

● BSD sockaddr (sys/socket.h)

Current mitigations lack sufficient coverage

Existing compiler features for array bounds checking

● -Warray-bounds (always almost ready)
○ Compile-time only: depends on compiler's internal determination of array sizes and index

variable value tracking

● -fsanitize=bounds (CONFIG_UBSAN_BOUNDS)
○ Depends on compiler's internal determination of array sizes...

● __builtin_object_size() (CONFIG_FORTIFY_SOURCE)
○ Only for fixed-size known at compile-time, similar to sizeof()

● __builtin_dynamic_object_size() (CONFIG_FORTIFY_SOURCE)
○ Gains run-time size from hints like __attribute__((__alloc_size__(...)))

🤕 None of these work correctly for trailing arrays, since the compiler is forced
to assume all trailing arrays are of an unknown size.

Compiler diagnostics blind to all trailing arrays

Mitigations from prior slide work for “array” as long as it isn’t the last element in
the structure:

struct foo {

int something;

int array[6];

int more;

};

● Fixed size.
● Not trailing.
● Protected.

struct bar {

int something;

int array[6];

};

● Fixed size.
● Trailing.
● Not protected.

struct baz {

int something;

int array[];

};

● Unknown size.
● Trailing.
● Not protected.

GCC 13 and Clang 16: -fstrict-flex-arrays=3

● Makes the ambiguity of trailing fixed-sized arrays go away; they are their
declared size:

struct foo {

int something;

int array[6];

int more;

};

● Fixed size.
● Protected.

struct bar {

int something;

int array[6];

};

● Fixed size.
● Protected.

struct baz {

int something;

int array[];

};

● Unknown size.
● Not protected.

Future compiler feature: element_count attribute

#define __counted_by(member) \

 __attribute__((__element_count__(member)))

struct baz {

int something;

int count;

int array[];

};

● Unknown size.
● Not protected.

struct yay {

int something;

int count;

int array[] __counted_by(count);

};

● Run-time sized by “count” member.
● Protected.

Improve coverage:
Refactor array sizes to be unambiguous

Flexible array transformation refactoring

● The general case.
● Flexible arrays in Unions (and helpers).
● The case of UAPI.

The general case - [1] to []

struct foo {
...
size_t count;
struct bar array[1];

} *p;

p = kmalloc(sizeof(*p) + sizeof(struct bar) * (p->count - 1), GFP_KERNEL);

copy some data into p->array through memcpy()

for (i = 0; i < p->count; i++) {

do something with p->array[i] and live happily ever after :)

}

Before

The general case - [1] to []

struct foo {
...
size_t count;
struct bar array[];

} *p;

p = kmalloc(sizeof(*p) + sizeof(struct bar) * p->count, GFP_KERNEL);

copy some data into p->array through memcpy()

for (i = 0; i < p->count; i++) {

do something with p->array[i] and live happily ever after :)

}

After

The general case - [1] to []

struct foo {
...
size_t count;
struct bar array[1];

} *p;

Audit instances of

The general case - [1] to []

struct foo {
...
size_t count;
struct bar array[1];

} *p;

Audit instances of

● sizeof(*p)

The general case - [1] to []

struct foo {
...
size_t count;
struct bar array[1];

} *p;

Audit instances of

● sizeof(*p)
● sizeof(p->array)

The general case - [1] to []

struct foo {
...
size_t count;
struct bar array[1];

} *p;

Audit instances of

● sizeof(*p)
● sizeof(p->array)
● sizeof(struct foo)

The general case - [1] to []

struct foo {
...
size_t count;
struct bar array[1];

} *p;

Audit instances of

● sizeof(*p)
● sizeof(p->array)
● sizeof(struct foo)
● sizeof(struct bar)

The general case - [1] to []

struct foo {
...
size_t count;
struct bar array[1];

} *p;

Audit instances of

● sizeof(*p)
● sizeof(p->array)
● sizeof(struct foo)
● sizeof(struct bar)

● Identify the count member and look for instances of count - 1.

The general case - [1] to []

struct foo {
...
size_t count;
struct bar array[1];

} *p;

Audit instances of

● sizeof(*p)
● sizeof(p->array)
● sizeof(struct foo)
● sizeof(struct bar)

● Identify the count member and look for instances of count - 1.
● What if we don’t find count - 1 but only count?

The general case - [1] to []

struct foo {
...
size_t count;
struct bar array[1];

} *p;

Audit instances of

● sizeof(*p)
● sizeof(p->array)
● sizeof(struct foo)
● sizeof(struct bar)

● Identify the count member and look for instances of count - 1.
● What if we don’t find count - 1 but only count? Was that intentional? Is that a

bug? :p

The general case - [1] to []

struct foo {
...
size_t count;
struct bar array[1];

} *p;

Audit instances of

● sizeof(*p)
● sizeof(p->array)
● sizeof(struct foo)
● sizeof(struct bar)

● Identify the count member and look for instances of count - 1.
● What if we don’t find count - 1 but only count? Was that intentional? Is that a

bug? :p
● What if the element type is uint8_t or char or any type of size 1 byte?

The general case - [1] to []

struct foo {
...
size_t count;
struct bar array[1];

} *p;

Audit instances of

● sizeof(*p)
● sizeof(p->array)
● sizeof(struct foo)
● sizeof(struct bar)

● Identify the count member and look for instances of count - 1.
● What if we don’t find count - 1 but only count? Was that intentional? Is that a

bug? :p
● What if the element type is uint8_t or char or any type of size 1 byte?

○ Look for instances of ‘- 1’.

The general case - [1] to []

struct foo {
...
size_t count;
struct bar array[1];

} *p;

Audit instances of

● sizeof(*p)
● sizeof(p->array)
● sizeof(struct foo)
● sizeof(struct bar)

● Identify the count member and look for instances of count - 1.
● What if we don’t find count - 1 but only count? Was that intentional? Is that a

bug? :p
● What if the element type is uint8_t or char or any type of size 1 byte?

○ Look for instances of ‘- 1’. (how fun!) D:

The general case - [1] to []

struct foo {
...
size_t count;
struct bar array[1];

} *p;

Audit instances of

● sizeof(*p)
● sizeof(p->array)
● sizeof(struct foo)
● sizeof(struct bar)

● Identify the count member and look for instances of count - 1.
● What if we don’t find count - 1 but only count? Was that intentional? Is that a

bug? :p
● What if the element type is uint8_t or char or any type of size 1 byte?

○ Look for instances of ‘- 1’. (how fun!) D:
● Lastly, what if there is any struct containing struct foo as a member?

The general case - [0] to []

● Pretty much straightforward. Pay attention to any build warnings, though.
● Wait and see if we broke anything in user-space (UAPI).

struct foo {
...
size_t count;
struct bar array[];

} *p;

struct foo {
...
size_t count;
struct bar array[0];

} *p;

alloc_size = sizeof(*p) + sizeof(struct bar) * (p->count);

The general case - [0] to []

● Most of the transformations from [0] to [] were done with the following
Coccinelle script:

@@
identifier S, member, array;
type T1, T2;
@@
 struct S {
 ...

T1 member;
T2 array[

- 0
];

 };

Flexible arrays in Unions

● Use range when nr_range == 1
● Use ranges when nr_range > 1

Flexible arrays in Unions

● DECLARE_FLEX_ARRAY() for flex-arrays in unions (or alone in a struct).

The case of UAPI ([1] to [] - first attempts)

● Duplicate the original struct within a union.
● Flexible-array for kernel-space and one-element array for user-space.
● 2d3e5caf96b9 (“net/ipv4: Replace one-element array with flexible-array

member”)

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=2d3e5caf96b9

The case of UAPI ([1] to [] - better code)

● __DECLARE_FLEX_ARRAY() for flex-arrays in unions (or alone in a struct).
● The bad news is that the sizeof(flex_struct) will remain the same.
● 5854a09b4957 (“net/ipv4: Use __DECLARE_FLEX_ARRAY() helper”)

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5854a09b4957

The case of (“breaking”) UAPI

● Breaking user-space (android-tools 33.0.3). :P
● https://github.com/nmeum/android-tools/issues/74

https://github.com/nmeum/android-tools/issues/74

The case of (“breaking”) UAPI

● Breaking user-space. :P
● 94dfc73e7cf4 (“treewide: uapi: Replace zero-length arrays with flexible-array

members”)
● Kernel-space code.

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=94dfc73e7cf4

The case of (“breaking”) UAPI

● Breaking user-space. :P
● struct usb_handle
● User-space code.

https://android.googlesource.com/platform/packages/modules/adb/+/c830c90995fc0877348e2ed9cdeccf9b739138d2/client/usb_linux.cpp#60

The case of (“breaking”) UAPI

● The fix. :)
● 2247053 (“Update usage of usbdevfs_urb to match new kernel UAPI”)

https://android-review.googlesource.com/c/platform/packages/modules/adb/+/2247053

The case of (“breaking”) UAPI

● The fix. :)
● 2247053 (“Update usage of usbdevfs_urb to match new kernel UAPI”)

https://android-review.googlesource.com/c/platform/packages/modules/adb/+/2247053

Improve coverage:
Annotate dynamic array sizes

Annotate allocators with __alloc_size

Usually Easy!

void *kmalloc(size_t bytes, gfp_t flags);

into

void *kmalloc(size_t bytes, gfp_t flags) __alloc_size(1);

Tricky bit is there are a lot of allocation wrappers or fixed-size helpers:

kcalloc, kvalloc, devm_kmalloc, kmem_cache_alloc, ...

And the attribute gets lost across inlines.

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96503

Using allocators with __alloc_size

Knowledge limited to the function calling the allocator:

struct foo *p = kzalloc(struct_size(p, array, count),

 GFP_KERNEL);

...

for (int i = 0; i <= count; i++)

do_something(p->array[i]); /* size information available! */

...

return p; /* size information lost */

Or internally to protected memcpy() implementation, we can check:

__builtin_dynamic_object_size(p, 1);

Annotate flexible array structures with __counted_by

Usually easy! Normally there is an obvious naming convention:

struct vexpress_syscfg_func {

...

int num_templates;

u32 template[];

};

Manually annotate flex-array structs with __counted_by

Usually easy! Normally there is an obvious naming convention:

struct vexpress_syscfg_func {

...

int num_templates;

u32 template[] __counted_by(num_templates);

};

Automatically annotate structs with __counted_by

Can use Coccinelle to find allocate/assign patterns.

Find the allocation:

@allocated@

identifier STRUCT, ARRAY, COUNTER, CALC, COUNT;

struct STRUCT *PTR;

identifier ALLOC =~ "[kv][cvzm]alloc";

@@

 PTR = ALLOC(..., struct_size(PTR, ARRAY, COUNT), ...);

 ...

 PTR->COUNTER = COUNT;

Automatically annotate structs with __counted_by

Can use Coccinelle to find allocate/assign patterns.

Add the annotation:

@annotate@

type COUNTER_TYPE, ARRAY_TYPE;

identifier allocated.STRUCT;

identifier allocated.ARRAY;

identifier allocated.COUNTER;

attribute name __counted_by;

@@

 struct STRUCT {
 ...
 COUNTER_TYPE COUNTER;
 ...
 ARRAY_TYPE ARRAY[]
+ __counted_by(COUNTER)
 ;
 ...
 };

Compiler work

Ongoing work in GCC and Clang

● False positives with GCC's -Warray-bounds
○ jump threading: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=109071

● Nested flexible array structure visibility to __builtin_object_size()
○ GCC: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101832
○ Clang: needed

● Solve -fsanitize=bounds vs -fsanitize=object-size (the latter has
codegen issues)
○ CONFIG_UBSAN_OBJECT_SIZE was removed from Linux kernel

● Coordinate __counted_by attribute between compilers
○ Clang: https://reviews.llvm.org/D148381
○ GCC: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=108896

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=109071
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101832
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=69d0db01e210e07fe915e5da91b54a867cda040f
https://reviews.llvm.org/D148381
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=108896

Metrics!

Refactoring to use flexible array member (4 years)

Coverage for memcpy() bounds checking

For an x86_64 defconfig bound with CONFIG_FORTIFY_SOURCE=y, the counts
of memcpy() mitigation:

● Linux v6.1: 46.6% coverage
○ no __alloc_size, no -fstrict-flex-arrays=3
○ 4165 total (fixed-size: 1940, unknown: 2225)

● Linux v6.3: 54.4% coverage
○ yes __alloc_size, no -fstrict-flex-arrays=3
○ 3969 total (fixed-size: 1833, dynamic: 325, unknown: 1807)

● Linux v6.4-rc1: 56.7% coverage
○ yes __alloc_size, forced -fstrict-flex-arrays=3 with KCFLAGS
○ 3993 total (fixed-size: 1936, dynamic: 328, unknown: 1729)

● Future: add __counted_by, convert "unknown" to "dynamic"!

Questions/Thoughts?

Thanks for your attention!

Kees Cook <keescook@chromium.org>

https://fosstodon.org/@kees

Gustavo A. R. Silva <gustavoars@kernel.org>

https://fosstodon.org/@gustavoars

https://outflux.net/slides/2023/lss-na/bounds-checking.pdf

mailto:keescook@chromium.org
https://fosstodon.org/@kees
mailto:gustavoars@kernel.org
https://fosstodon.org/@gustavoars
https://outflux.net/slides/2023/lss-na/bounds-checking.pdf

