
A Decade of Low-hanging Fruit
in the Linux Kernel

Kees ("Case") Cook
https://fosstodon.org/@kees

kees@kernel.org

https://outflux.net/slides/2024/bsidespdx/decade.pdf

https://fosstodon.org/@kees
mailto:kees@kernel.org
https://outflux.net/slides/2024/bsidespdx/decade.pdf

Hello Neighbors!

with apologies to

 Fred Rogers & Travis Goodspeed

Hello Neighbors!

with apologies to

 Fred Rogers & Travis Goodspeed

About me

Professionally:

2003 .. 2006: Open Source
Development Lab (became
the Linux Foundation)

2006 .. 2011: Canonical,
Ubuntu Security Team Lead

2011+: Google,
Upstream Linux Kernel
Security Hardening Lead

Personally:

2002+: Portlander

∞: Free Software Hacker

2006, 2007: DefCon CTF
Black Badge winner

"Seriously, Kees. You are just making security people look bad. Stop it."

– Linus Torvalds, circa 2017

<Narrator> He did not, in fact, stop it </Narrator>

https://lore.kernel.org/lkml/CA+55aFzbiBqsYb7vwO=+L4Vp_GOgPu+DBOrq4fBnyzq5DbBehg@mail.gmail.com/

"Seriously, Kees. You are just making security people look bad. Stop it."

– Linus Torvalds, circa 2017

<Narrator> He did not, in fact, stop it </Narrator>

https://lore.kernel.org/lkml/CA+55aFzbiBqsYb7vwO=+L4Vp_GOgPu+DBOrq4fBnyzq5DbBehg@mail.gmail.com/

"The most likely way for the world to be
destroyed, most experts agree, is by
accident.

"The most likely way for the world to be
destroyed, most experts agree, is by
accident. That's where we come in;
we're computer professionals.

"The most likely way for the world to be
destroyed, most experts agree, is by
accident. That's where we come in;
we're computer professionals.
We cause accidents."

"The most likely way for the world to be
destroyed, most experts agree, is by
accident. That's where we come in;
we're computer professionals.
We cause accidents."

– Nathaniel Borenstein, of MIME fame
(as attributed by Nicole Perlroth)

https://en.wikipedia.org/wiki/Nathaniel_Borenstein
https://www.goodreads.com/book/show/49247043-this-is-how-they-tell-me-the-world-ends

Practicing Accidents: Capture the Flag

Reverse engineer binary or
Analyze source code

Find and understand The Flaw

Weaponize flaw

Mount attack

Harden binary or source code

Defend against attacks

Red Team

Blue Team

Practicing Accidents: Capture the Flag

Reverse engineer binary or
Analyze source code

Find and understand The Flaw

Weaponize flaw

Mount attack

Harden binary or source code

Defend against attacks

Body Armor: Linux Kernel Self-Protection Project

I announced the project in November 2015 (as an upstream Linux focus area)

Our two specific goals:

● Remove entire bug classes (stop the whack-a-mole of fixing individual bugs)
● Eliminate exploitation methods (don't make things easy for attackers)

It's been almost 10 years of cat herding!

Have things improved?

Let's look at vulnerability trends ...

https://kspp.github.io/

But first … Linux kernel flaws and CVEs

● Common Vulnerability Enumeration (maps vulnerabilities to CVE identifiers)

● Linux Kernel became its own CVE Naming Authority (CNA) in Feb 2024,
which changed how CVEs got assigned.

● Prior to that, CVEs were most often assigned by general-purpose distros, and
followed their threat models. (And dramatically under-counted flaws in the
kernel.)

Linux Flaws Venn Diagram of Doom

Omniscient: All flaws in Linux

Linux Flaws Venn Diagram of Doom

Omniscient: All flaws in Linux

Publicly known flaws

Linux Flaws Venn Diagram of Doom

Omniscient: All flaws in Linux

Publicly known flaws

Fixed flaws

Accidentally
fixed flaws

Linux Flaws Venn Diagram of Doom

Omniscient: All flaws in Linux

Publicly known flaws

Fixed flaws

Security flaws

Known but
unfixed security
flaws

Accidentally
fixed security
flaws

Yet to be found
security flaws

Linux Flaws Venn Diagram of Doom

Omniscient: All flaws in Linux

Publicly known flaws

Fixed flaws

pre-2024
CVEs

Security flaws

 Publicly known flaws

Fixed flaws

pre-2024
CVEs

 Security flaws

All flaws False positives
(not security flaws)

True positives
(accidentally fixed or identified)

True positives (unfixed)

False positives
(not flaws)

 Publicly known flaws

Fixed flaws

 Security flaws

All flaws

pre-2024
CVEs

kernel.org
CNA CVEs

 Publicly known flaws

Fixed flaws

 Security flaws

All flaws

kernel.org
CNA CVEs

False positives
(not security flaws)

True positives
(accidentally fixed)

True positives (unfixed)

Security flaws

pre-2024
CVEs

kernel.org
CNA CVEs

Reminder: the goal is to fix security flaws, not CVEs…
(kernel.org CNA CVEs match reality much better)

Lies, Damn Lies, and Statistics

● I use the Ubuntu CVE Tracker for my vulnerability statistics – they track the
commits that introduced flaws as well as commits that fixed flaws, and they
assign severity. This is everything I need to examine trends and lifetimes.

● Doing a retrospective examination of CVEs across the switch between CVE
assignment methods isn't going to be easy. So I won't! To get a historical
sense of vulnerability class trends, I only looked at pre-CNA CVEs.

● Now let's really look at some trends in bug classes!

https://ubuntu.com/security/cves

2038 !

32-bit time_t Unix Epoch wrap!

11111111111111111111111111111111 03:14:07 19 Jan 2038 UTC

 +1 *tick*

00000000000000000000000000000000 00:00:00 1 Jan 1970 UTC

So … integer overflows …

2031 !

2020: BleedingTooth
https://google.github.io/security-research/pocs/linux/bleedingtooth/writeup.html

struct hci_dev {
 ...
 struct discovery_state {
 ...
 u8 last_adv_data[HCI_MAX_AD_LENGTH];
 ...
 };
 ...
 struct list_head {
 struct list_head *next;
 struct list_head *prev;
 } mgmt_pending;
 ...
};

memcpy(d->last_adv_data, data, len); /* len > HCI_MAX_AD_LENGTH ?! */

https://google.github.io/security-research/pocs/linux/bleedingtooth/writeup.html

So where is the low hanging fruit now?

Where are all the Use-After-Free flaws coming from?

 30 net/netfilter
 28 net/l2tp
 17 drivers/android/binder.c
 16 sound/core
 15 fs/ext4
 14 net/sched
 14 fs/io_uring.c
 11 net/bluetooth
 10 net/ipv4
 9 kernel/futex.c
 8 net/ax25
 7 fs/btrfs
 6 net/nfc
 6 kernel/trace
 5 net/sctp
 5 net/packet
 5 net/ipv6

 5 fs/io-wq.h
 5 drivers/tty/vt
 5 drivers/net/hamradio
 5 drivers/gpu/drm
 4 net/unix
 4 net/socket.c
 4 fs/ntfs3
 4 fs/namei.c
 4 fs/eventpoll.c
 4 fs/cifs
 4 drivers/usb/misc
 4 drivers/media/dvb-core
 4 drivers/media/cec/core
 4 drivers/gpu/drm/vmwgfx
 4 drivers/block
 3 net/xfrm
 ...

Use-After-Free Research and Mitigation

● Google kernelCTF Vulnerability (and Patch) Reward Program
https://google.github.io/security-research/kernelctf/rules
○ netfilter

https://docs.google.com/spreadsheets/d/e/2PACX-1vS…wfvYC2oF/pubhtml
○ io_uring

https://security.googleblog.com/2023/06/learnings-from-kctf-vrps-42-linux.html

● Android Binder being rewritten in Rust:
https://rust-for-linux.com/android-binder-driver

https://google.github.io/security-research/kernelctf/rules
https://docs.google.com/spreadsheets/d/e/2PACX-1vS1REdTA29OJftst8xN5B5x8iIUcxuK6bXdzF8G1UXCmRtoNsoQ9MbebdRdFnj6qZ0Yd7LwQfvYC2oF/pubhtml
https://security.googleblog.com/2023/06/learnings-from-kctf-vrps-42-linux.html
https://rust-for-linux.com/android-binder-driver

How did we drive down other bug classes?

● refactored to use trapping reference counters
● refactored to fault when accessing beyond the end of kernel stack
● removed Variable Length Arrays (VLAs) on the stack
● replaced open-coded allocation size arithmetic
● replaced set_fs() API to avoid user/kernel address space confusions
● improved compiler to reject implicit switch case fall-throughs
● improved compiler to zero-initialize stack variables
● improved compiler to actually check array sizes
● MOAR…

How did we drive down other bug classes?

● refactored to use trapping reference counters
● refactored to fault when accessing beyond the end of kernel stack
● removed Variable Length Arrays (VLAs) on the stack
● replaced open-coded allocation size arithmetic
● replaced set_fs() API to avoid user/kernel address space confusions
● improved compiler to reject implicit switch case fall-throughs
● improved compiler to zero-initialize stack variables
● improved compiler to actually check array sizes
● MOAR…

C supports ambiguity

"Ambiguity is the path to the Dark Side.

Ambiguity leads to confusion;

confusion leads to flaws;

flaws lead to suffering.

I sense much ambiguity in you."

– Yoda, about the C language

C supports ambiguity
(but we can fix that)

● "Undefined Behavior" is the
source of so many flaws, but is
just one special case of "language
ambiguity"

● and of course the lack of memory
safety, no variable lifetime
enforcement, no safe concurrency

What to do about it?

● Remove ambiguity in C
● Write new stuff in Rust

With Undefined Behavior

Anything is Possible
https://raphlinus.github.io/programming/rust

/2018/08/17/undefined-behavior.html

https://raphlinus.github.io/programming/rust/2018/08/17/undefined-behavior.html
https://raphlinus.github.io/programming/rust/2018/08/17/undefined-behavior.html

Remove Ambiguity in C
"uninitialized" stack variables

There is no such thing as "uninitialized" !th -ftrivial-auto-var-init=zero

int function(int input)
{

int on_the_stack; /* contains whatever was on stack */

return input * on_the_stack; /* returns what??? */
}

Some compiler folks worries "this will fork the language" … YES PLEASE

https://media.defcon.org/DEF%20CON%2019/DEF%20CON%2019%20presentations/DEF%20CON%2019%20-%20Cook-Kernel-Exploitation.pdf

Remove Ambiguity in C
"uninitialized" stack variables

Now we can build with -ftrivial-auto-var-init=zero ...

int function(int input)
{

int on_the_stack; /* contains 0 */

return input * on_the_stack; /* returns 0 */
}

Some compiler folks worried "this will fork the language" … YES PLEASE

Remove Ambiguity in C
not all arrays can be bounds checked

struct foo {
 …
 …
 int fixed_size_array[16];
 int flexible_array[];
};

Can do bounds checking! (16 elements)

No dimension: no bounds checking :(

Remove Ambiguity in C
not all arrays can be bounds checked

Now we can use the counted_by attribute …

struct foo {
 …
 int items;
 int fixed_size_array[16];
 int flexible_array[] __attribute__((counted_by(items));
};

Can do bounds checking! (16 elements)

Can do bounds checking! ("items"-many elements)

Remove Ambiguity in Compilers

The C Standard is strict, slow-moving, and prioritizes compatibility over robustness.
The key to making any practical progress with GCC, Clang, and even MSVC is to
use the magic phrase:

I would like to add this Language Extension …

Then coordinate the extension between compilers, and the C Standard can catch
up when they're ready.

Remove Ambiguity in Compilers

The C Standard is strict, slow-moving, and prioritizes compatibility over robustness.
The key to making any practical progress with GCC, Clang, and even MSVC is to
use the magic phrase:

I would like to add this Language Extension …

Then coordinate the extension between compilers, and the C Standard can catch
up when they're ready.

Write New Stuff in Rust

It's a long road to in the Linux kernel, but the language
bindings have been steadily landing. Entire graphics drivers
have been written in Rust: Apple AGX, Nova. Also
filesystems, block drivers, network PHY drivers… If the Linux
kernel can get it done, so can your project!

You know it's time to ditch C/C++ when even governments
have noticed the dumpster fire. National Security Agency
(NSA), Cybersecurity and Infrastructure Security Agency
(CISA), and Office of the National Cyber Director (ONCD):

The Case for Memory Safe Roadmap

Exploring Memory Safety in Critical Open Source Projects

https://rust-for-linux.com/

https://media.defense.gov/2023/Dec/06/2003352724/-1/-1/0/THE-CASE-FOR-MEMORY-SAFE-ROADMAPS-TLP-CLEAR.PDF
https://www.cisa.gov/sites/default/files/2024-06/joint-guidance-exploring-memory-safety-in-critical-open-source-projects-508c.pdf
https://rust-for-linux.com/

Those have been my shared struggles. How're you doing?

Just getting started? Keep it up!

Already writing stuff in Rust? You're awesome!

Defending the Cloud from evil? The job never ends!

Keeping AI from consuming the planet? I don't want to be turned into paperclips!

Jail-breaking devices so I can fully use the hardware I own? Thank you!

Doing other stuff in this industry? I love it!

All of our work is important

https://en.wikipedia.org/wiki/Universal_Paperclips

Just getting started? Keep it up!

Already writing stuff in Rust? You're awesome!

Defending the Cloud from evil? The job never ends!

Keeping AI from consuming the planet? I don't want to be turned into paperclips!

Jail-breaking devices so I can fully use the hardware I own? Thank you!

Doing other stuff in this industry? I love it!

All of our work is important

Those have been my shared struggles. How're you doing?

https://en.wikipedia.org/wiki/Universal_Paperclips

Just getting started? Keep it up!

Already writing stuff in Rust? You're awesome!

Defending the Cloud from evil? The job never ends!

Keeping AI from consuming the planet? I don't want to be turned into paperclips!

Jail-breaking devices so I can fully use the hardware I own? Thank you!

Doing other stuff in this industry? I love it!

All of our work is important

Those have been my shared struggles. How're you doing?

https://en.wikipedia.org/wiki/Universal_Paperclips

Just getting started? Keep it up!

Already writing stuff in Rust? You're awesome!

Defending the Cloud from evil? The job never ends!

Keeping AI from consuming the planet? I don't want to be turned into paperclips!

Jail-breaking devices so I can fully use the hardware I own? Thank you!

Doing other stuff in this industry? I love it!

All of our work is important

Those have been my shared struggles. How're you doing?

https://en.wikipedia.org/wiki/Universal_Paperclips

Just getting started? Keep it up!

Already writing stuff in Rust? You're awesome!

Defending the Cloud from evil? The job never ends!

Keeping AI from consuming the planet? I don't want to be turned into paperclips!

Jail-breaking devices so I can fully use the hardware I own? Thank you!

Doing other stuff in this industry? I love it!

All of our work is important

Those have been my shared struggles. How're you doing?

https://en.wikipedia.org/wiki/Universal_Paperclips

Just getting started? Keep it up!

Already writing stuff in Rust? You're awesome!

Defending the Cloud from evil? The job never ends!

Keeping AI from consuming the planet? I don't want to be turned into paperclips!

Jail-breaking devices so I can fully use the hardware I own? Thank you!

Doing other stuff in this industry? I love it!

All of our work is important

Those have been my shared struggles. How're you doing?

https://en.wikipedia.org/wiki/Universal_Paperclips

Just getting started? Keep it up!

Already writing stuff in Rust? You're awesome!

Defending the Cloud from evil? The job never ends!

Keeping AI from consuming the planet? I don't want to be turned into paperclips!

Jail-breaking devices so I can fully use the hardware I own? Thank you!

Doing other stuff in this industry? I love it!

All of our work is important

Those have been my shared struggles. How're you doing?

https://en.wikipedia.org/wiki/Universal_Paperclips

Just getting started? Keep it up!

Already writing stuff in Rust? You're awesome!

Defending the Cloud from evil? The job never ends!

Keeping AI from consuming the planet? I don't want to be turned into paperclips!

Jail-breaking devices so I can fully use the hardware I own? Thank you!

Doing other stuff in this industry? I love it!

All of our work can be a struggle, but it makes a difference

Those have been my shared struggles. How're you doing?

https://en.wikipedia.org/wiki/Universal_Paperclips

I don't care if this is cheesy, it's still true…

Fred Rogers again:

"… what you're planning
and doing are things that
can be a real help to you
and your neighbor.

I'm proud of you."

https://www.youtube.com/watch?v=eq9mJnbuKcQ

Thank you!

Enjoy the rest of the day :)

Kees ("Case") Cook
https://fosstodon.org/@kees

kees@kernel.org

https://outflux.net/slides/2024/bsidespdx/decade.pdf

https://fosstodon.org/@kees
mailto:kees@kernel.org
https://outflux.net/slides/2024/bsidespdx/decade.pdf

