
Kernel Sanitizers Office Hours
Hosted by: Alexander Potapenko (Google); Dmitry Vyukov (Google); Kees Cook (Google);

Marco Elver (Google); Paul McKenney (Meta)

Agenda

1. Kernel Sanitizers Primer
● Kernel Address Sanitizer (KASAN)
● Kernel Memory Sanitizer (KMSAN)
● Kernel Concurrency Sanitizer (KCSAN)
● Undefined Behaviour Sanitizer (UBSAN)

2. Discussion and Questions

Kernel Sanitizers Primer

Dynamic Analysis

● Dynamic program analysis is about analyzing a piece of code “dynamically”:
the analysis observes the program as it is being executed

● Dynamic analysis reports typically point out system errors or failures
○ Can rarely deduce the underlying system fault / bug
○ Quality of diagnostics often inversely correlated with the performance of a tool

4

Dynamic Analysis

● Only the state space that was covered during execution is analyzed

Program state space

Analyzed
state space

5

Dynamic Analysis

source files
/

binary files

Runtime Libraries

Executable

runtime
checksInstrumentation

(compiler-inserted)

Undefined Behavior

Why “undefined behavior”?

● C designed for fine-grained control over low-level details, such as how
memory is organized (essential in kernel development)

● Unsafe languages simply say: some well-typed programs are undefined 💥
○ Trade-off: simpler type system + higher performance (no dynamic error checking)

● Safe languages with manual memory management hard to design &
implement

○ Rust is considered safe in its “safe” subset

7

Memory Safety Errors

Memory Safety Errors

Memory-safety errors are the root cause of most security attacks [Szekeres et al. Oakland’13]

Out-of-bounds accesses

● Accesses memory beyond the allocated memory
○ No bounds checking by default
○ Compiler may sometimes warn (if it can infer array size)

● May read random data, or corrupt other kernel state!
○ Can be exploited to leak memory, or control kernel in unintended ways!

10

void print_upper_buggy(const char *str)
{
 char buf[10];
 strcpy(buf, str); // unchecked strcpy!
 for (char *c = buf; *c; ++c)
 *c = toupper(*c);
 pr_info("%s\n", buf);
}

Heap use-after-free

● Accesses recently unallocated heap memory
○ Memory may already have been recycled

● May read random data, or corrupt other kernel state!
○ Can be exploited to leak memory, or control kernel in unintended ways!

 void print_upper_buggy(const char *str)
{
 char *buf = kmalloc(strlen(str), GFP_KERNEL);
 if (WARN_ON(!buf)) return;
 strcpy(buf, str);
 for (char *c = buf; *c; ++c)
 *c = toupper(*c);
 kfree(buf); // whoops!
 pr_info("%s\n", buf); // use-after-free!
}

11

Stack use-after-return

● Access to memory in invalid stack frame
○ Stack memory may already have been reused in the next call

● May read random data, or corrupt other kernel state!
○ Can be exploited to leak memory, or control kernel in unintended ways!

12

 const char *strtoupper_buggy(const char *str)
{
 char buf[64];
 strlcpy(buf, str, sizeof(buf));
 for (char *c = buf; *c; ++c)
 *c = toupper(*c);
 return buf; // return of pointer to stack var!
}

Kernel Address Sanitizer (KASAN)

Detects: out-of-bounds accesses, heap use-after-free, and stack use-after-returns

Usage [docs.kernel.org/dev-tools/kasan.html]:

● Generic (default): CONFIG_KASAN=y
○ For debugging and testing kernels
○ Not recommended for production kernels!

● Software tags: CONFIG_KASAN=y + CONFIG_KASAN_SW_TAGS=y
○ For debugging and testing kernels
○ Lower overhead vs. generic, but also not recommended for production kernels!

● Hardware tags: CONFIG_KASAN=y + CONFIG_KASAN_HW_TAGS=y
○ Currently requires Arm64 Memory Tagging Extension (MTE)
○ Usable in production kernels!

https://docs.kernel.org/dev-tools/kasan.html

Uses of uninitialized memory

● Access memory that has not been initialized
● May read random data or even old data from recycled memory!

○ Could be exploited to leak sensitive data!

void hello_tux_buggy(const char *name)
{
 char buf[10];
 strlcpy(buf, str, sizeof(buf));
 if (buf[0] == 't' && buf[1] == 'u' && buf[2] == 'x')
 printf("hello world\n");
}

14

Detects: uses-of-uninit, kernel-user-space information leaks

Usage [docs.kernel.org/dev-tools/kmsan.html]:

● CONFIG_KMSAN=y
● For debugging and testing kernels
● Not recommended for production kernels!

💡 To mitigate stack uninit bugs in production, use:
 CONFIG_INIT_STACK_ALL_ZERO=y (-trivial-auto-var-init=zero)

Kernel Memory Sanitizer (KMSAN)

https://docs.kernel.org/dev-tools/kmsan.html

Data Races

Data Races in the Linux Kernel

Data races (✘) occur if:

● Concurrent conflicting accesses
○ they conflict if they access

the same location and at
least one is a write, …

● and at least one is a plain access.

 Thread 0 Thread 1
… = x + 1; x = 0xf0f0;

… = x + 1; WRITE_ONCE(x, 0xf0f0);

… = READ_ONCE(x) + 1; x = 0xf0f0;

… = READ_ONCE(x) + 1; x++;

✘

✘

✘

… = READ_ONCE(x) + 1; WRITE_ONCE(x, 0xf0f0);✔

✘

x = 0xff00; x = 0xff;✘

WRITE_ONCE(x, 0xff00); WRITE_ONCE(x, 0xff);✔

Kernel Concurrency Sanitizer (KCSAN)

Usage [docs.kernel.org/dev-tools/kcsan.html]:

● CONFIG_KCSAN=y
● For debugging and testing kernel
● Not recommended for production kernels!
● Suggested config: CONFIG_KCSAN_STRICT=y (since 5.17)

○ "Strict" LKMM rules (but as of 6.11 still noisy)
○ Includes weak memory modeling (detect missing memory barriers)

http://docs.kernel.org/dev-tools/kcsan.html

Other Types of Undefined Behavior

“Undefined” Behaviour Sanitizer: CONFIG_UBSAN=y

Behavioral toggle:

● Trap instead of warning: CONFIG_UBSAN_TRAP=y

Production ready:

● Detect out of range shifts: CONFIG_UBSAN_SHIFT=y
● Detect out of bounds array indexes: CONFIG_UBSAN_BOUNDS=y

Pedantic:

● Non-boolean type used as bool: CONFIG_UBSAN_BOOL=y
● Value assigned to enum not in enum declaration: CONFIG_UBSAN_ENUM=y

Under development:

● Semantic Fault, arithmetic wrap-around: CONFIG_UBSAN_INTEGER_WRAP=y

Trap instead of warning: UBSAN_TRAP=y

For the various individual tests under the UBSAN prefix, the TRAP setting
determines how the kernel should behave when detecting an issue. Normally, a
warning with details is reported, and execution continues without correcting the
issue (but the kernel image is about 5% larger from all the text and handling):

 UBSAN: array-index-out-of-bounds in drivers/gpu/drm/v3d/v3d_sched.c:320:3
 index 7 is out of range for type '__u32 [7]'

Under UBSAN_TRAP=y, a much more terse BUG is reported, and the thread is
terminated:

 Internal error: UBSAN: shift out of bounds: 00000000f2005514 [#1] PREEMPT SMP

See warn_limit sysctl for a more flexible way to turn WARN into BUG

https://docs.kernel.org/admin-guide/sysctl/kernel.html#warn-limit

Detect out of range shifts: UBSAN_SHIFT=y

int negative = -1;

u16 bit_field = ...;

...

use_some_bits(bit_field << negative); // catch “negative” shift

int has_sign = INT_MAX;

...

use_some_bits(has_sign << 4); // catch shift of signed bit

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/log/?qt=grep&q=shift-out-of-bounds
110 fixes in 5 years

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/log/?qt=grep&q=shift-out-of-bounds

Detect out of bounds array indexes: UBSAN_BOUNDS=y

int array[16];
int index = 16;
...
do_something(array[index]); // catch index outside of [0..15]

struct foo {
 int num_bars;
 struct bar[] __counted_by(num_bars);
} *p = kmalloc(struct_size(p, bar, 8), GFP_KERNEL);
...
do_something(p->array[index]); // catch index outside of [0..(p->num_bars-1)]

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/log/?qt=grep&q=shift-out-of-bounds
93 fixes in 5 years
Depends on the kernel’s default use of -fstrict-flex-arrays=3 and the hundreds of refactoring patches
to move from old array[1]/array[0] style “fake” flexible arrays to real flexible arrays, and related changes.

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/log/?qt=grep&q=shift-out-of-bounds

Semantic Faults

Semantic Faults

● Faults that don’t cause “undefined behavior”, but still result in system errors
● System deviates from its intended behavior
● Who defines intended behavior?

○ Formal specification, reference implementation, documentation, manual
○ Worst case: not written down, but in programmer’s head

● Much harder to detect
○ Tests
○ Assertions
○ Defensive programming style
○ …

UBSAN_INTEGER_WRAP=y Detect wrapping arithmetic

● Technically working …
○ GCC & Clang: -fsanitize={signed-integer-overflow,pointer-overflow}
○ Clang: has; GCC: Needed: -fsanitize=unsigned-integer-overflow

● … but there are some significant behavioral caveats related to -fwrapv and
-fwrapv-pointer (enabled via kernel’s use of -fno-strict-overflow)

○ “It’s not an undefined behavior to wrap around.”
○ Clang: 19+; GCC: Needed

● For the Linux kernel, we need "idiom exclusions" to avoid instrumenting cases
where wrap-around is either already checked, or is not part of program flow:

○ if (var + offset < var)
○ while (var–)
○ -1UL, -2UL, …
○ Clang: 19+; GCC: Needed

● Type filtering support allows instrumentation to be toggled for specific types
○ Clang: 20?; GCC: Needed

● Add annotations in kernel for unexpected wrap-around types (size_t first)
○ Clang: 20?; GCC: Needed

https://github.com/llvm/llvm-project/commit/81b4b89197a6be5f19f907b558540bb3cb70f064
https://lore.kernel.org/lkml/202405081949.0565810E46@keescook/
https://github.com/llvm/llvm-project/commit/295fe0bd438209831071ffbacf003c4941f31b90
https://github.com/llvm/llvm-project/pull/107332
https://github.com/llvm/llvm-project/pull/86618

Concurrency bugs that are not data races

Thread 0

spin_lock(&update_foo_lock);

/* Careful! There should be no other

writers to shared_foo! Readers ok. */

WRITE_ONCE(shared_foo, ...);

spin_unlock(&update_foo_lock);

27

Concurrency bugs that are not data races

Thread 0 Thread 1

spin_lock(&update_foo_lock);

/* Careful! There should be no other

writers to shared_foo! Readers ok. */

WRITE_ONCE(shared_foo, ...);

spin_unlock(&update_foo_lock);

/* update_foo_lock does not

need to be held! */

... = READ_ONCE(shared_foo);

28

Concurrency bugs that are not data races

Thread 0 Thread 1 Thread 2

spin_lock(&update_foo_lock);

/* Careful! There should be no other

writers to shared_foo! Readers ok. */

WRITE_ONCE(shared_foo, ...);

spin_unlock(&update_foo_lock);

/* update_foo_lock does not

need to be held! */

... = READ_ONCE(shared_foo);

/* Bug! */

WRITE_ONCE(shared_foo, 42);

29

Concurrency bugs that are not data races

Thread 0 Thread 1 Thread 2

spin_lock(&update_foo_lock);

/* No other writers to shared_foo. */

ASSERT_EXCLUSIVE_WRITER(shared_foo);

WRITE_ONCE(shared_foo, ...);

spin_unlock(&update_foo_lock);

/* update_foo_lock does not

need to be held! */

... = READ_ONCE(shared_foo);

/* Bug! */

WRITE_ONCE(shared_foo, 42);

30

How KCSAN can help find more bugs

● ASSERT_EXCLUSIVE family of macros:
○ Specify properties of concurrent code, where bugs are not normal data races.

concurrent writes concurrent reads

ASSERT_EXCLUSIVE_WRITER(var)
ASSERT_EXCLUSIVE_WRITER_SCOPED(var) ✘ ✔

ASSERT_EXCLUSIVE_ACCESS(var)
ASSERT_EXCLUSIVE_ACCESS_SCOPED(var) ✘ ✘

ASSERT_EXCLUSIVE_BITS(var, mask) ~mask✔ mask✘ ✔

Agenda

1. Kernel Sanitizers Primer
● Kernel Address Sanitizer (KASAN)
● Kernel Memory Sanitizer (KMSAN)
● Kernel Concurrency Sanitizer (KCSAN)
● Undefined Behaviour Sanitizer (UBSAN)

2. Discussion and Questions

Discussion and Questions

● Share your experience. Have sanitizers been helpful, not so helpful?
● Rust and kernel sanitizers?
● Fixing data races?
● …

Bonus Material

Data Races

Data Races

● C-language and compilers evolved oblivious to concurrency
● Optimizing compilers are becoming more creative

○ load tearing,
○ store tearing,
○ load fusing,
○ store fusing,
○ code reordering,
○ invented loads,
○ invented stores,
○ … and more!

⚠ Need to tell compiler about concurrent code

📖 "Who's afraid of a big bad optimizing compiler?", LWN 2019. URL: https://lwn.net/Articles/793253/

https://lwn.net/Articles/793253/

Data Races

Defined via language's memory consistency model:

● C-language and compilers no longer oblivious to concurrency:
○ C11 introduced memory model: "data races cause undefined behaviour"
○ Not Linux's model!

● Linux has its own memory model, giving semantics to concurrent code
○ Linux Kernel Memory Consistency Model (LKMM)
○ Implemented by relying on parts of the C standard, the two C implementations (GCC &

Clang/LLVM), architecture-specific code, and also coding guidelines (along with some luck that
none of the supported C compilers "miscompile" our concurrent code)

Data Races

Data-race-free code has several benefits:

1. Well-defined. Avoids having to reason about compiler and architecture.
– Avoid having to reason "Is this data race benign?"

2. Fewer bugs. Data races can also indicate higher-level race-condition bugs.
– E.g. failing to synchronize accesses using spinlocks, mutexes, RCU, etc.

3. Prevent bugs, and countless hours debugging elusive race conditions!

Data Races in the Linux Kernel

Data races (✘) occur if:

● Concurrent conflicting accesses
○ they conflict if they access

the same location and at
least one is a write, …

● and at least one is a plain access.

 Thread 0 Thread 1
… = x + 1; x = 0xf0f0;

… = x + 1; WRITE_ONCE(x, 0xf0f0);

… = READ_ONCE(x) + 1; x = 0xf0f0;

… = READ_ONCE(x) + 1; x++;

✘

✘

✘

… = READ_ONCE(x) + 1; WRITE_ONCE(x, 0xf0f0);✔

✘

x = 0xff00; x = 0xff;✘

WRITE_ONCE(x, 0xff00); WRITE_ONCE(x, 0xff);✔

Intentional Data Races

● The Linux kernel says that data races do not result in undefined behaviour of
the whole kernel

● Locally "undefined" behaviour: where code still operates correctly even with
potentially random data, data races are tolerated (truly "benign" data races)

● Mark such data races with "data_race(..data-racy expression ..)"
○ Helps tooling understand they are intentional
○ Document intent (e.g. debugging-only checks)

For more guidance: tools/memory-model/Documentation/access-marking.txt

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/memory-model/Documentation/access-marking.txt

