
Toolchain security features
status update

Kees Cook <keescook@chromium.org>
Qing Zhao <qing.zhao@oracle.com>
Bill Wendling <morbo@google.com>

https://outflux.net/slides/2023/lpc/features.pdf

mailto:keescook@chromium.org
mailto:qing.zhao@oracle.com
mailto:morbo@google.com
https://outflux.net/slides/2023/lpc/features.pdf

Flashback! 2022 security features review
GCC Clang

zero call-used registers yes yes

structure layout randomization plugin yes

stack protector guard location arm64 arm32 riscv ppc arm64 arm32 riscv ppc

forward edge CFI CPU inline hash CPU inline hash

backward edge CFI CPU CPU SCS:arm64

-fstrict-flex-arrays in progress workable

counted_by attribute no no

integer overflow protection broken broken

https://outflux.net/slides/2022/lpc/features.pdf

2023: security features review
GCC Clang RustC

zero call-used registers yes yes needed

structure layout randomization plugin yes needed

stack protector guard location arm64 arm32 riscv ppc arm64 arm32 riscv ppc N/A

forward edge CFI CPU inline hash CPU inline hash in progress

backward edge CFI CPU SCS:arm64 CPU SCS:arm64 SCS:arm64

-fstrict-flex-arrays yes yes yes

counted_by attribute in progress in progress ???

integer overflow protection broken broken exists

New compiler to consider: RustC

● With Rust in the Linux kernel, we need to keep RustC at parity with Clang and
GCC so we avoid cross-language attacks.

● Areas where Rust hardening needs attention:
○ zero call-used regs needs to happen in Rust code too
○ randstruct needs to work with Rust or structs aren’t ordered correctly
○ kCFI is in progress (slide 58)
○ counted_by attribute needs to be investigated
○ arithmetic overflow handling exists, but how to wire up traps consistently vs UBSan?

https://www.ndss-symposium.org/ndss-paper/auto-draft-259/
https://doc.rust-lang.org/rustc/exploit-mitigations.html
https://kangrejos.com/2023/The%20Rust%20for%20Linux%20Kernel%20Report.pdf

Parity reached: -fstrict-flex-arrays=3

● -fstrict-flex-arrays=3
○ Implemented in GCC 13+.
○ Implemented in Clang 16+.

● Includes logic changes for -fsanitize=bounds and
__builtin_dynamic_object_size()

● Linux kernel enabled it globally in v6.5.

https://gcc.gnu.org/onlinedocs/gcc/C-Dialect-Options.html#index-fstrict-flex-arrays
https://clang.llvm.org/docs/ClangCommandLineReference.html#cmdoption-clang-fstrict-flex-arrays
https://git.kernel.org/linus/df8fc4e934c12b906d08050d7779f292b9c5c6b5

Work needed: stack protector guard location (no progress)

Arch Linux Kernel Options GCC Clang

x86_64 &
ia32

-mstack-protector-guard-reg=fs
-mstack-protector-guard-symbol=__stack_chk_guard yes (8.1+) yes (16+)

arm64 -mstack-protector-guard=sysreg
-mstack-protector-guard-reg=sp_el0
-mstack-protector-guard-offset=...TSK_STACK_CANARY... yes (9.1+) yes (14+)

arm32 -mstack-protector-guard=tls
-mstack-protector-guard-offset=...TSK_STACK_CANARY... yes (13.1+) yes (15+)

riscv -mstack-protector-guard=tls
-mstack-protector-guard-reg=tp
-mstack-protector-guard-offset=...TSK_STACK_CANARY...

yes (12.1+) needed

powerpc -mstack-protector-guard=tls
-mstack-protector-guard-reg=r13 yes (7.1+) needed?

https://gcc.gnu.org/git/?p=gcc.git;a=commitdiff;h=d5bf81b30f7d3faf58d52784013749ca0f9f980f
https://github.com/llvm/llvm-project/commit/a45dd3d8140eab78a4554484c2b0435582ee262a
https://gcc.gnu.org/git/?p=gcc.git;a=commitdiff;h=cd0b2d361df82c848dc7e1c3078651bb0624c3c6
https://github.com/llvm/llvm-project/commit/0f417789192e74f9d2fad0f6aee4efc394257176
https://gcc.gnu.org/git/?p=gcc.git;a=commitdiff;h=9d7a84b96980d357bb9a3d368044fb18aab4aade
https://github.com/llvm/llvm-project/commit/a19da876ab93d54ebc20aadd12820f74220d2f50
https://gcc.gnu.org/git/?p=gcc.git;a=commitdiff;h=c931e8d5a96463427040b0d11f9c4352ac22b2b0
https://github.com/llvm/llvm-project/issues/46685
https://gcc.gnu.org/git/?p=gcc.git;a=commitdiff;h=1b3254e4bbe82245421a55324bc8fe34a99c6e3c

Work needed: forward edge CFI

● CPU hardware support (coarse-grain: marked entry point matching) at parity
○ x86 ENDBR instruction, GCC & Clang (CONFIG_X86_KERNEL_IBT):

■ -fcf-protection=branch
○ arm64 BTI instruction, GCC & Clang (CONFIG_ARM64_BTI_KERNEL):

■ -mbranch-protection=bti
■ __attribute__((target("branch-protection=bti")))
■ GCC bug still open

● Software (fine-grain: per-function-prototype matching)
○ Clang: inline hash checking: -fsanitize=kcfi (arm64 and x86_64)
○ GCC: inline hash checking needed (earlier arm64 effort needs more attention)

● Exploitation of func pointers easier than ever via automated gadget discovery
○ https://www.usenix.org/conference/usenixsecurity19/presentation/wu-wei

https://lore.kernel.org/all/20220905142255.591990-1-broonie@kernel.org/
https://lore.kernel.org/lkml/20230325081117.93245-1-ashimida.1990@gmail.com/
https://www.usenix.org/conference/usenixsecurity19/presentation/wu-wei

Work needed: backward edge CFI

● CPU hardware support at parity
○ x86 Shadow Stack CPU feature bit and implicit operation: no compiler support needed

■ Kernel support landed finally (Shadow Stack systems available for 3 years now)!
■ In-kernel Shadow Stack still not explored yet.

○ arm64 PAC instructions, GCC and Clang (CONFIG_ARM64_PTR_AUTH_KERNEL):
■ -mbranch-protection=pac-ret[+leaf]
■ __attribute__((target("branch-protection=pac-ret[+leaf]")))

● Software (shadow stack)
○ x86: inline hash checking (like kCFI) would be nice to have in both Clang and GCC
○ arm64 shadow call stack: GCC (12.1+) and Clang (CONFIG_SHADOW_CALL_STACK):

■ -fsanitize=shadow-call-stack

https://gcc.gnu.org/git/?p=gcc.git;a=commitdiff;h=ce09ab17ddd21f73ff2caf6eec3b0ee9b0e1a11e

In progress: bounds-checked Flexible Array Members

New attribute to annotate bounds of FAMs to enable flexible array bounds checking at runtime:

 struct object {
 int items;
 int flex[] __attribute__((__counted_by__(items)));
 };

Use new attribute for array bounds check of flexible arrays (via -fsanitize=bounds) and
__builtin_dynamic_object_size() too (for FORTIFY_SOURCE).

https://docs.google.com/document/d/1bqdc1YD3UmJ_HRo0E7zTPVU5PZL_7e7Gw4ERBeNx_Xk/edit#heading=h.naukbem1fn2r

GCC Status: counted_by attribute (The Current Plan)

1. Provide counted_by attribute to flexible array member (FAM).
2. Use the attribute in __builtin_dynamic_object_size (subobject

only).
3. Use the attribute in array bounds sanitizer.
4. Improve __builtin_dynamic_object_size to use the attribute for

whole-object.
5. Emit warnings when the user breaks the requirements for the new attribute.

We planned to finish 1-3 in GCC14, and then 4-5 in GCC15.
Have submitted 3rd version for patches 1-3 to GCC upstream on 2023-08-29.
Due to a missing data dependency issue raised during review, have to postpone
all 1-5 to GCC15.

https://gcc.gnu.org/pipermail/gcc-patches/2023-August/628459.html

GCC Status: counted_by attribute (Missing Data Dependency)

 1 struct A {
 2 size_t size;
 3 char buf[] __attribute__((counted_by(size)));
 4 };
 5 size_t foo (size_t sz) {
 6 struct A *obj = __builtin_malloc (sizeof(struct A) + sz * sizeof(char));
 7 obj->size = sz;
 8 return __builtin_dynamic_object_size (obj->buf, 1);
 9 }

The call to __bdos at line 8 will use obj->size at line 7.
This implicit data dependency is missing in the source code.
Compiler might reorder these two statements or apply other wrong optimizations
without the data dependency presenting.

GCC Status: counted_by attribute (Missing Data Dependency)

The solution

● a new GCC internal function to carry this data dependency.
 .ACCESS_WITH_SIZE (REF_TO_OBJ, REF_TO_SIZE, …)

● replace every reference to a FAM field with counted_by with this function.

 7 obj->size = sz;
 tmp = .ACCESS_WITH_SIZE (obj->buf, &obj->size, …)
 8 return __builtin_dynamic_object_size (tmp, 1);

GCC Status: counted_by attribute (The User Interface)
counted_by (COUNT)

The number of the elements of the FAM is given by the field named COUNT in the
same structure.

One important feature:
A ref to the FAM will use the latest value assigned to
the size field:
 p->count = val1; ref1 (p->array);
 p->count = val2; ref2 (p->array);
ref1 uses val1, ref2 uses val2.

struct P {
 size_t count;
 char array[] __attribute__ ((counted_by (count)));
} *p;

Two Requirements:
1. p->count should be initialized before the first

reference to p->array.

2. p->array has at least p->count number of
elements available all the time.

GCC Status: counted_by attribute (A Small Example)

test.h:
struct annotated {
 size_t count;
 char other;
 char array[] __attribute__((counted_by (count)));
};
/* Compute the minimum # of bytes needed to hold a structure “annotated”,
 whose # of elements of “array” is COUNT. */
#define MAX(A, B) (A > B) ? (A) : (B)
#define ALLOC_SIZE_ANNOTATED(COUNT) \
 MAX(sizeof (struct annotated), \
 offsetof(struct annotated, array[0]) + (COUNT) * sizeof(char))
/* Allocate the memory for the structure with FAM,
 update “count” with the # of elements “index”. */
static struct annotated * __attribute__((__noinline__)) alloc_buf (int index)
{
 struct annotated *p;
 p = (struct annotated *) malloc (ALLOC_SIZE_ANNOTATED(index));
 p->count = index;
 return p;
}

GCC Status: counted_by attribute (A Small Example)

Use counted_by in bound sanitizer:

Yes, it can with the counted_by attribute:

$ my_gcc -O2 -fsanitize=bounds test.c && ./a.out
test.c:22:21: runtime error: index 11 out of bounds for type 'int [*]'

test.c:
#include "test.h"
int main ()
{
 struct annotated *p_annotated = alloc_buf (10);
 p_annotated->array[11] = 0; // out-of-bounds access, can GCC detect it?
 return 0;
}

GCC Status: counted_by attribute (A Small Example)

test.c:
#include "test.h"
#include <stdio.h>

int main ()
{
 struct annotated *p = alloc_buf (10);
 printf ("The max __bdos sub-object is %lu\n",
 __builtin_dynamic_object_size (p->array, 1));
 // Can GCC compute the sub-object size now?
 return 0;
}

Yes, it can with the counted_by attribute:

$ my_gcc -O2 test.c && ./a.out
The max __bdos sub-object is 10

Use counted_by in __bdos for sub-object size:

GCC Status: counted_by attribute (Further Improvement)

Improve __bdos for whole-object size!!

GCC Status: counted_by attribute (Further Improvement)

2. p->array has at least p->count number of
elements available all the time.

 struct annotated *p;
 p = (struct annotated *)

 malloc (ALLOC_SIZE_ANNOTATED(n));
 p->count = n + SIZE_BUMP;
 p->array[n + 1] = 10; // out-of-bound

 //will not be detected.

1. p->count should be initialized before the
first reference to p->array.

 struct annotated *p;
 p = (struct annotated *)

 malloc (ALLOC_SIZE_ANNOTATED(n));
 p->array[n + 1] = 10; // out-of-bound will

 // not be detected.
 p->count = n;

Compilation time: -Wcounted-by
Run time: -fsanitizer=counted-by

Issue warnings when user requirements are violated:

GCC Status: counted_by attribute (Future Work)

● Add the counted_by attribute for FAM first; (GCC15?)
● Extend the counted_by attribute to general pointers;
● Add more attributes later if needed (sized_by, ended_by, etc);
● Integrate the array bounds information for FAM and general pointers into

language syntax and TYPE system.
● The potential to integrate the -fbounds-safety proposal into GCC.

https://discourse.llvm.org/t/rfc-enforcing-bounds-safety-in-c-fbounds-safety/70854

Clang Status: counted_by attribute (Current Status)

Working closely with GCC on the implementation. One change from GCC's
implementation. Borrowing from Qing's slide:

1. Provide counted_by attribute to flexible array member (FAM).
2. Use the attribute in __builtin_dynamic_object_size (sub-object

only).
3. Use the attribute in array bounds sanitizer.
4. Improve __builtin_dynamic_object_size to use the attribute for

whole-object.
5. Emit warnings when the user breaks the requirements for the new attribute.

test.h:
struct annotated {
 size_t count;
 char other;
 char array[] __attribute__((counted_by (count)));
};

/* ... MAX and ALLOC_SIZE_ANNOTATED definitions ... */

/* Allocate the memory for the structure with a FAM,
 update “count” with the # of elements “count”. */
static struct annotated * __attribute__((__noinline__)) alloc_buf(int count) {
 struct annotated *p;
 p = (struct annotated *) malloc(ALLOC_SIZE_ANNOTATED(index));
 p->count = count;
 return p;
}

Clang Status: counted_by attribute (Reminder)

$ cat test.c
#include <stdio.h>
#include <stdlib.h>
#include "test.h"

extern void foo(char c);

int main () {
 struct annotated *p = alloc_buf (10);

 /* Sanitizer: Out-of-bounds index. */
 foo(p->array[42]);
 return 0;
}

$ clang -O2 -fsanitize=array-bounds test.c && ./a.out
test.c:11:9: runtime error: index 42 out of bounds for type 'char *'
SUMMARY: UndefinedBehaviorSanitizer: undefined-behavior test.c:11:9 in
The value is 0.

Clang Status: counted_by attribute (Examples)

$ cat test.c
#include <stdio.h>
#include <stdlib.h>
#include "test.h"

int main () {
 struct annotated *p = alloc_buf (10);

 /* Size of a flexible array member. */
 printf("The max __bdos(p->array, 1) == %lu.\n",
 __builtin_dynamic_object_size(p->array, 1));
 return 0;
}

$ clang -O2 test.c && ./a.out
The max __bdos(p->array, 1) == 10.

Clang Status: counted_by attribute (Examples)

$ cat test.c
#include <stdio.h>
#include <stdlib.h>
#include "test.h"

int main () {
 struct annotated *p = alloc_buf (10);

 /* Size of pointer within a flexible array member. */
 printf("The max __bdos(&p->array[3]) == %lu.\n",
 __builtin_dynamic_object_size(&p->array[3], 1));
 return 0;
}

$ clang -O2 test.c && ./a.out
The max __bdos(&p->array[3], 1) == 7.

Clang Status: counted_by attribute (Examples)

Clang Status: counted_by attribute (Examples)

$ cat test.c
#include <stdio.h>
#include <stdlib.h>
#include "test.h"

int main () {
 struct annotated *p = alloc_buf (10);

 /* Size of a flexible array member with out-of-bounds indices. */
 printf("The max __bdos(&p->array[-1], 1) == %lu.\n",
 __builtin_dynamic_object_size(&p->array[-1], 1));
 printf("The max __bdos(&p->array[42], 1) == %lu.\n",
 __builtin_dynamic_object_size(&p->array[42], 1));
 return 0;
}

$ clang -O2 test.c && ./a.out
The max __bdos(&p->array[-1], 1) == 0.
The max __bdos(&p->array[42], 1) == 0.

$ cat test.c
#include <stdio.h>
#include <stdlib.h>
#include "test.h"

int main () {
 struct annotated *p = alloc_buf (10);

 /* Size of struct with a flexible array member. */
 printf("The max __bdos(p, 1) == %lu.\n",
 __builtin_dynamic_object_size(p, 1));
 return 0;
}

$ clang -O2 test.c && ./a.out
The max __bdos(p, 1) == 19.

Clang Status: counted_by attribute (Examples)

Clang Status: -fbounds-safety (Future Work)

● Adopt GCC's data dependency workaround and new flags
● Work with Apple and GCC to implement Apple's bounds safety features:

○ Pointers to a single object: __single
■ Pointer arithmetic is a compile time error

○ External bounds annotations: __counted_by(N), __sized_by(N), and __ended_by(P)
○ Internal bounds annotations (i.e. "Rubenesque" pointers): __bidi_indexable and

__indexable
○ Sentinel-delimited arrays: __null_terminated and __terminated_by(T)
○ Annotation for interoperating with bounds-unsafe code: __unsafe_indexable

See Apple's LLVM Enforcing Bounds Safety in C RFC

https://discourse.llvm.org/t/rfc-enforcing-bounds-safety-in-c-fbounds-safety/70854

Work needed: bounds checking for general pointers

● Two types of arrays
○ Fixed-sized bounds in TYPE
○ Dynamically-sized

■ Variable-length array (VLA) bounds in TYPE
■ Flexible array member (FAM) bounds in attribute
■ Pointer offset where are the bounds?

● The -fbounds-safety extension offers bounds annotations that can be
attached to pointers in general.
(Apple’s RFC for LLVM[1] on May 24,2023)

https://discourse.llvm.org/t/rfc-enforcing-bounds-safety-in-c-fbounds-safety/70854

Work needed: -fbounds-safety proposal from Apple

● A superset of counted_by attribute
● Covers all the pointers and arrays (including FAM)
● More effort and burden when adopting existing C applications
● We might consider to add this later

Work needed: other aspects of bounds checking

● Handling nested structures ending in a Flexible Array Member (Clang)
○ https://github.com/llvm/llvm-project/issues/72032

● -Warray-bounds false positives (GCC, due to jump threading)
○ https://gcc.gnu.org/bugzilla/show_bug.cgi?id=109071

● Language extension to support Flexible Array Members in Unions
○ https://gcc.gnu.org/pipermail/gcc/2023-May/241426.html

union u {
 int foo;

char bar[0];
};

https://github.com/llvm/llvm-project/issues/72032
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=109071
https://gcc.gnu.org/pipermail/gcc/2023-May/241426.html

Work needed: arithmetic overflow protection

● Technically working …
○ GCC & Clang: -fsanitize={signed-integer-overflow,pointer-overflow}
○ Clang: -fsanitize=unsigned-integer-overflow

● … but there are some significant behavioral caveats related to -fwrapv and
-fwrapv-pointer (enabled via kernel’s use of -fno-strict-overflow)

○ “It’s not an undefined behavior to wrap around.”
● More than avoiding “undefined behavior”, we want no “unexpected behavior”.

○ Like run-time bounds checking, need arithmetic overflow to be handled as a trap or “warn
and continue with wrapped value” and a way to optionally allow wrap-around.

○ It would be nice to have a “warn and continue with saturated value” mode instead, to reduce
the chance of denial of service and reach normal error checking.

● Clarify language for “overflow” vs “wrap around”

Questions / Comments ?

Thank you for your attention!

Kees Cook <keescook@chromium.org>

Qing Zhao <qing.zhao@oracle.com>

Bill Wendling <morbo@google.com>

mailto:keescook@chromium.org
mailto:qing.zhao@oracle.com
mailto:morbo@google.com

Bonus Slides…

counted_by may track logical (instead of allocated) size

struct annotated {
 unsigned short allocated;
 unsigned short usable;
 ...
 struct foo array[] __attribute__((counted_by (usable)));
};

 struct annotated *p;
 int i = 0;

 p = malloc(sizeof(*p) + sizeof(p->array[0]) * max_item_queue_size);
 p->allocated = max_item_queue_size;
 p->usable = 0;
 while (items_available() && i < p->allocated) {
 p->usable ++;
 memcpy(&p->array[i++], next_item(), sizeof(p->array[0]));
 }

Work needed: Link Time Optimization

● Toolchain support is at parity
○ GCC: -flto
○ Clang: -flto or -flto=thin

● Linux kernel support is only present with Clang
● No recent patches sent to LKML
● Latest development branch (against v5.19) appears to be Jiri Slaby’s,

continuing Andi Kleen’s work:
○ https://git.kernel.org/pub/scm/linux/kernel/git/jirislaby/linux.git/log/?h=lto

https://git.kernel.org/pub/scm/linux/kernel/git/jirislaby/linux.git/log/?h=lto

Work needed: Spectre v1 mitigation

● GCC: wanted? no open bug…
● Clang:

○ -mspeculative-load-hardening
○ __attribute__((speculative_load_hardening))
○ https://llvm.org/docs/SpeculativeLoadHardening.html

● Performance impact is relatively high, but lower than using lfence everywhere.
● Really needs some kind of “reachability” logic to reduce overhead.

● Does anyone care about this?

https://llvm.org/docs/SpeculativeLoadHardening.html

